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Abstract—Traditional wisdom for network resource manage-
ment is to allocate separate frequency-time resources for mea-
surement and data transmission tasks. As a result, the two types
of tasks have to compete for resources, and a heavy measurement
task inevitably reduces available resources for data transmission.
This prevents interference graph estimation (IGE), a heavy yet
important measurement task, from being widely used in practice.
To resolve this issue, we propose to use power as a new dimension
for interference measurement in full-duplex mmWave backhaul
networks, such that no extra frequency-time resources are needed
for measurement. Our core insight is to consider the mmWave
network as a linear system, where the received powers of a node
can be expressed as the product of the powers of transmitters and
the equivalent channel gains from the transmitters to the node.
By controlling the powers of transmitters, we can find unique
solutions for the equivalent channel gains, which will then be
used to estimate interference. To accomplish resource allocation
and IGE simultaneously, we jointly optimize resource allocation
and IGE with power control. Extensive simulations show that
significant links in the interference graph can be accurately
estimated with less than 3% increase in power consumption,
independent of the time synchronization and carrier frequency
offset (CFO) estimation errors between nodes.

Index Terms—mmWave backhauling, interference graph esti-
mation, resource allocation

I. INTRODUCTION

Network densification is a key mechanism to increase
spectrum reuse such that the network capacity can be greatly
boosted for future explosive growth of user demand. However,
dense deployment of small cells is costly with a fiber back-
haul [1]. For fast and cost-effective deployment of dense small
cells, millimeter-wave (mmWave) backhauling is proposed as
a promising backhaul alternative. In mmWave communica-
tions, to combat large path loss in high-frequency bands,
the transmitters generally employ beamforming techniques
to direct their beams towards the receivers, resulting in
less interference between links. Despite that, under dense
deployment, mmWave networks are shown to still operate
in the interference-limited regime: the network capacity is
significantly affected by the interference among nodes [2].
Further, the inter-link interference is exacerbated when full-
duplex capabilities are used to improve the network capacity
by allowing more concurrent transmissions. It is thus critical
to effectively manage interference for resource allocation in
full-duplex mmWave backhaul networks.

In dense mmWave networks, interference-aware resource
allocation has been extensively studied, where interference

is depicted in various forms. The simplest form is a conflict
graph (or contention graph) dictating if two links can be active
at the same time [3], [4]. To construct a conflict graph, we
typically need to estimate the interference between each pair
of links. A network with n links includes O(n2) pairs of links
to be measured, incurring heavy measurement overhead. It is
possible to reduce the measurement overhead by measuring
only a subset of links and inferring the rest using matrix
completion [5] or graph embedding techniques [6]. However,
these techniques leverage node or link similarities to predict
interference distribution, with no accuracy guarantee at the
link level. More importantly, conflict graphs depict the binary
relations between links, which cannot capture the additive
nature of interference.

The second form to characterize interference in mmWave
communications is modelling, which can be used to estimate
the magnitude of interference and to capture its additive
nature. Modelling the channel and antenna patterns of one
mmWave link requires choosing proper model parameters
based on the propagation environment and there exist a variety
of choices. A mmWave channel could consist of either a
single LOS component, purely scattering components, or a
mix of both the LOS and scattering components [7], [8].
Each component could further experience different degrees
of path loss and fading [9], [10]. Both the complexities and
errors in modelling the channel and antenna patterns make
it impractical to estimate the interference accurately. This
leads to poor resource allocation decisions and, consequently,
degraded network performance.

More recently, considering the complexities in both in-
terference modelling and measurements, machine learning
techniques have been used to learn a direct mapping from
network information to resource allocation decisions without
directly estimating the interference. In [11], a deep learning
approach is proposed to use the geographic locations of nodes
as input and learn link scheduling decisions from a large
scale of network layouts to achieve the maximum sum rate in
device-to-device networks. Further improvement using graph
embedding and deep neural networks reduces the scale of
training data from hundreds of thousands to hundreds of
network layouts [12]. These data-driven techniques require
knowing the static attributes of nodes (e.g. locations), not
adaptive to dynamic network conditions, e.g., fading.

Compared to the approaches above, the most practical one is
introduced in 4G LTE-A to measure the interference between
base stations (BSs) and user equipments (UEs) using CSI-979-8-3503-1090-0/23/$31.00 © 2023 IEEE
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IM reference signals. Specifically, when the serving BS of an
UE sends no signal on a CSI-IM resource element (RE), the
received signal strength of the UE is then the interference from
other BSs on that RE. For scheduling purposes, interference
has to be measured separately for each interfering BS, requir-
ing operations that tell UEs which REs to measure and which
REs to be used for reporting back measurements. This incurs
heavy measurement overheads when the number of interfering
BSs is large, especially in dense networks. More importantly,
this process requires nanosecond-scale synchronization be-
tween BSs and accurate estimation of carrier frequency offsets
(CFOs) between UEs and their interfering BSs, where strict
time synchronization is difficult in a fiber backhaul [13] and
becomes even harder in a multi-hop wireless backhaul [14].

Motivated by these challenges, we want to 1) efficiently
estimate the interference graph, depicting the inter-link in-
terference, for full-duplex mmWave backhaul networks under
imperfect time synchronization and carrier frequency offset
(CFO) estimation, and 2) use it to improve the efficiency
of resource allocation. We propose to use power as a new
dimension for interference graph estimation (IGE) such that
no extra frequency-time resources need to be consumed. Our
core insight is that the received power of a node can be
expressed as a linear combination of channel gains and the
powers of transmitters. In a time-slotted network, manipulating
the powers of transmitters enables each node to have different
received powers across time slots, i.e., a group of linear
equations. Channel gains can have a unique solution if the
powers of transmitters form a full-rank matrix.

In summary, our contributions in this paper are as follows.
• We show that the mmWave network can be considered as

a linear system and propose to estimate the interference
graph by manipulating the transmit powers of nodes,
robust to time synchronization and CFO estimation errors.

• We formulate the problem of joint resource allocation
and IGE, such that IGE can be done simultaneously with
resource allocation without consuming extra frequency-
time resources.

• We evaluate our approach with extensive simulations un-
der various network settings and show that our approach
can accomplish resource allocation and IGE simultane-
ously with minimal overhead on power consumption.

II. SYSTEM MODEL

A. Millimeter-Wave Backhauling

We consider a multi-hop mmWave backhaul network with
K BSs, one of which serves as a gateway to the core network,

as shown in Figure 1. Each BS is equipped with a full-duplex
radio such that it can transmit data to one node and receive
data from another node simultaneously. All BSs are assumed
to be time-synchronized and scheduled to transmit and receive
data at specified time slots. The scheduling decision is made
at the gateway in a centralized way, which requires each BS to
report local measurements of the channel information back to
the gateway. After a scheduling plan is made, it is disseminated
from the gateway to all BSs. Both the data collection and
dissemination for network management purposes are done
through the backhaul network using the control channel.
Each BS modulates the transmitted symbols with orthogonal
frequency division multiplexing (OFDM) and uses all Nc

subcarriers for each transmission. Concurrent transmissions in
the same time slot may interfere with each other.

We consider the CFO and timing offset (TO) between BSs.
Since BSs are not mobile, the Doppler frequency shift is neg-
ligible and CFO is mainly caused by the oscillator mismatch
in frequency. The TO arises from the synchronization errors
among BSs as well as the difference in the propagation delays
when considering the signals from multiple transmitters to the
same receiver. We assume that no cooperative transmission
is used and that each receiver is assumed to receive data
from a single transmitter. For demodulation, each receiver only
estimates the CFO of the transmitter and will not compensate
the CFOs of other transmitters.

B. Channel Model

Let (k, z) be the directional link from BS k to z, and E
be the set of all directional links. For simplicity, each BS is
assumed to have an M -antenna array and the channel from BS
k to z is denoted as H(k,z) ∈ CM×M . When BS k is trans-
mitting to BS z, the transmit and receive beamforming vectors
of BSs k and z are γ̃(k,z) ∈ CM×1 and ω̃(k,z) ∈ CM×1,
respectively. Since BSs are typically deployed at high places
with fixed locations, the channel coherence time between BSs
is relatively stable [15], and H(k,z) is assumed to be a slow
time-varying fading channel. We denote the residual CFO
of BS k with respect to BS z as ϕ(k,z), normalized to the
subcarrier spacing with a range between −0.5 and 0.5, and
the integer-valued TO of link (k, z) as µ(k,z). Let x(k,z)[i] and
y(k,z)[i] be the i-th discrete transmitted and received samples
for the link (k, z), respectively. The i-th received sample for
link (k, z) can be expressed as

y(k,z)[i]

= ω̃T
(k,z)

 ∑
(l,d)∈E

ej2πiϕ(l,z)H(l,z)γ̃(l,d)x(l,d)[i− µ(l,d)] + v[i]


where E is the set of all links and v[i] ∼ CN (0, σ2I) is

the noise variance at each antenna of the receiving BS. Let
heq
(l,d),(k,z) = ω̃T

(k,z)H(l,z)γ̃(l,d). We can rewrite the equation
above as

y(k,z)[i] =
∑

(l,d)∈E

ej2πiϕ(l,z)heq
(l,d),(k,z)x(l,d)[i− µ(l,d)] + ṽ[i],
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where ṽ[i] = ω̃T
(k,z)v[i]. The time-domain sample x(l,d)[i] is

the inverse discrete Fourier transform (IDFT) of the modulated
symbols, {X(l,d)[r]}Nc−1

r=0 , i.e.,

x(k,z)[i] =
1√
N

Nc−1∑
l=0

X(k,z)[l]e
j2πil/Nc , 0 ≤ n ≤ Nc+Ng−1,

where X(k,z)[l] is the modulated symbol on the l-th subcarrier
transmitted from BS k to z, and Ng is the length of the cyclic
prefix (CP).

C. Interference Model

In the mmWave network, each node employs the beam-
forming techniques to generate a radiation pattern with a main
beam and multiple side lobes. Due to hardware constraints, the
mmWave nodes could have limited codebook size for beam-
forming and irregular radiation patterns [16], which makes
interference nulling difficult. We thus consider the interference
from both the main beam and the side lobes of transmitters.
In mmWave communications, interference depends on the
directions of both transmission and reception. Suppose that
nodes s and k are transmitting to nodes l and z, respectively.
The interference from link (s, l) to link (k, z), denoted as
g(s,l),(k,z), can be expressed as a product of the transmission
gain at node s, the channel gain of the interference link from
node s to z, and the reception gain at node z with beam-
forming towards node k, denoted as gt(s,l),(k,z), g

c
(s,l),(k,z), and

gr(s,l),(k,z), respectively. Let ptx(k,z) be the transmit power of
node k to node z, and prx(k,z) be the received power of node z
from node k. We can express the received power of node z as

prx(k,z) =
∑

(s,l)∈E

gt(s,l),(k,z)g
c
(s,l),(k,z)g

r
(s,l),(k,z)︸ ︷︷ ︸

g(s,l),(k,z)

ptx(s,l) +BN0,

where B is the mmWave bandwidth and N0 is the noise power
spectral density. Suppose that node k is transmitting to node
z, we can express the signal-to-interference-plus-noise ratio
(SINR) at node z as

SINR(k,z) =
g(k,z),(k,z)p

tx
(k,z)

prx(k,z) − g(k,z),(k,z)p
tx
(k,z)

,

where g(s,l),(k,z) =
∣∣∣heq

(l,d),(k,z)

∣∣∣2.

III. INTERFERENCE GRAPH ESTIMATION:
A POWER CONTROL APPROACH

A. Estimating Interference Graph with Power Control

Lemma 1. In analog beamforming mmWave networks, if
E[|X(s,d)[i]|2] = E[|X(s,d)[j]|2] and E[X(s,d)[i]] = 0 for all
i’s and (s, d)’s, the expected receive power of node z with
beamforming towards node k, i.e., E[|y(k,z)[i]|2], is a linear
combination of the equivalent channel gains and the expected
transmit powers of nodes over links, independent of TOs and
CFOs, i.e.,

E[|y(k,z)[i]|2] =
∑

(l,d)∈E

g(l,d),(k,z)E[|x(l,d)[i]|2] +W, (1)

where g(l,d),(k,z) is the equivalent channel gain between links
(l, d) and (k, z).

Proof: Please refer to Appendix A.
Let si and ri be the senders and receiver of the i-th

directional link, respectively, and ptx(si,ri)[t] and prx(si,ri)[t] be
the transmit and receive powers of nodes si and ri at time t.

Theorem 1. The equivalent channel gains between links can
be estimated by controlling the transmit powers of senders of
different links over time such that

rank(Ptx) = |E|, (2)

where Ptx =
[
ptx
(s1,r1)

, . . . ,ptx
(s|E|,r|E|)

]
and ptx

(si,ri)
=

[ptx(si,ri)[j], . . . , p
tx
(si,ri)

[j + n − 1]]T includes the transmit
powers of the sender at link (si, ri) from time j to j + n− 1.

Proof: Let prx
(k,z) =

[
prx(k,z)[j], . . . , p

rx
(k,z)[j + n− 1]

]T
be

the receive powers of node z with beamforming towards node
k at different times, and w = [W, . . . ,W ]T be the vector of
noise power. According to Eq. (1), we can have

prx
(k,z) = Ptxg(k,z) +w, (3)

where g(k,z) = [g(s1,e1),(k,z), . . . , g(s|E|,e|E|),(k,z)]
T , (si, ei) ∈

E . Since Ptx ∈ Rn×|E| and n ≥ |E|, g(k,z) has a unique
solution if rank(Ptx) = |E|.

From Theorem 1, we know that the channel gains can be
estimated if the actual transmit powers can approximate the
expected transmit powers and form a full-rank matrix.

IV. JOINT OPTIMIZATION FOR INTERFERENCE GRAPH
ESTIMATION AND RESOURCE ALLOCATION

A. Problem Formulation

We assume that each node has a single path to the gateway,
which is determined by the routing algorithm. Based on the
buffer status reports of UEs, we can infer the traffic demand
for each link. Our goal is to maximize the energy efficiency of
the mmWave backhaul network in satisfying the traffic demand
within the required number of time slots. Since the traffic
demand for each link is fixed, the joint optimization problem
can be formulated as follows.

(P1) min
P,δ

∑
k∈K

∑
(i,j)∈E

ptx(i,j)[k]τ

s.t. (C1)
∑

j∈K
δ(j,i)[k] ≤ 1,∀i ∈ K,

(C2)
∑

j∈K
δ(i,j)[k] ≤ 1,∀j ∈ K,

(C3) δ(i,j)[k] ∈ {0, 1}, ∀(i, j) ∈ E ,

(C4)

M∑
k=1

δ(i,j)[k] ≥
⌈
D(i,j)

R(i,j)τ

⌉
,∀(i, j) ∈ E ,

(C5) SINR(i,j) ≥ γ(i,j)δ(i,j)[k],∀(i, j) ∈ E ,
(C6.1) p

tx
(i,j)[k] ≥ δ(i,j)[k]Pmin,∀(i, j) ∈ E ,

(C6.2) p
tx
(i,j)[k] ≤ δ(i,j)[k]Pmax,∀(i, j) ∈ E ,

(C7) rank(P
tx) = |E|,
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where τ is the time slot length, δ(i,j)[k] indicates if node i is
sending to node j at k-th time slot, D(i,j) is the traffic demand
for link (i, j), and R(i,j) is the transmission rate under the
selected modulation and coding scheme (MCS), γ(i,j) is the
required SINR of link (i, j) that can support the transmission
rate R(i,j), K is the set of indices for time slots, Pmax and
Pmin are the boundary powers.

B. Proposed Solution

Since τ is fixed, we want to minimize the total transmit
power. To solve this rank-constrained mixed-integer nonlinear
programming (MINLP), we divide P1 into two subproblems:
a MINLP without the rank constraint, i.e.,

(P2) min
P ,δ

∑
i∈K

∑
(i,j)∈E

ptx(i,j)[k]

s.t. C1-C6,

and a rank-constrained linear programming problem, i.e.,

(P3) min
P

∑
i∈K

∑
(i,j)∈E

ptx(i,j)[k]

s.t. C5-C7,

where P2 first determines the on/off states of links in each
time slot, indicated by δ, and then P3 bases on δ to obtain
the power allocation P that satisfies the rank constraint. P3 is
different from P1 in that as δ is given in P3, its variable list
does not include δ, making it not a mixed-integer problem.
We solve each subproblem as follows.

C. Solution to P2

1) Continuous Relaxation: As mentioned, P2 is a noncon-
vex MINLP. We first relax the binary variables δ(i,j)[k]’s into
continuous that δ(i,j)[k] ∈ [0, 1]. As a result, the problem
becomes a nonconvex nonlinear problem. After the problem is
solved, we want to convert relaxed continuous X(i,j)[k]’s back
to binary and thus introduce a penalty term in the objective
function to penalize δ(i,j)[k]’s for deviating from 0 or 1.
The penalty term is f(δ) = g1(δ) + g2(δ), where g1(δ) =∑
k∈K

∑
(i,j)∈E δ(i,j)[k] and g2(δ) = −

∑
k∈K

∑
(i,j)∈E(δ(i,j)[k])

2.

Suppose δ(t−1) is a feasible solution at the (t−1)-th iteration.
g2(δ) can be linearized by its first-order Taylor approximation
near δ(t−1) as

g2(δ) ≤ g̃2(δ) ≜ g2(δ
(t−1)) +∇gT2 (δ

(t−1))(δ − δ(t−1)).

2) Convex Relaxation: P2 is nonconvex due to constraint
C5. A popular way of solving nonconvex problems is succes-
sive convex approximation (SCA), which relaxes the noncon-
vex problem into a convex one and iteratively solve the convex
problem until convergence. To relax constraint C5, we rewrite
it into two constraints, i.e.,

(C5.1) s(i,j)[k] = BN0 +
∑

(l,d)∈E\(i,j)

g(l,d),(i,j)p
tx
(l,d)[k], (4)

and

(C5.2)
ptx(i,j)[k]

γ(i,j)
g(i,j),(i,j) ≥ δ(i,j)[k]s(i,j)[k]. (5)

Following the principle of SCA, we need to find a convex
surrogate function for the nonconvex term in C5.2 as

δ(i,j)[k]s(i,j)[k] ≤
ϕ(i,j)[k]

2
(δ(i,j)[k])

2 +
(s(i,j)[k])

2

2ϕ(i,j)[k]
(6)

for any constant ϕ(i,j)[k] > 0, where the equality holds when
ϕ(i,j)[k] = s(i,j)[k]/δ(i,j)[k]. Then, constraint C5.2 becomes

(C5.3)
g(i,j),(i,j)

γ(i,j)
ptx(i,j)[k] ≥

ϕ(i,j)[k]

2
(δ(i,j)[k])

2 +
(s(i,j)[k])

2

2ϕ(i,j)[k]
,

which is a convex constraint.
Let S be the matrix for s(i,j)[k]’s. At the t-th iteration, P2-1

can then be relaxed as

(P2-1) min
P ,δ,S

∑
i∈C

∑
k∈K

ptx(i,j)[k] + λg1(δ) + λg̃2(δ)

s.t. C1, C2, C4, C5.1, C5.3, C6,

δ(i,j)[k] ∈ [0, 1]

which is a second-order cone programming (SOCP) problem.
The solution to P2 can be obtained by iteratively solving P2-1
until convergence.

D. Solution to P3

When δ is given, constraint C5 becomes linear and P3 is
a rank-constrained linear programming problem. As shown
in [17], rank constraints are discontinuous and nonconvex,
which needs to be gradually approximated with a sequence of
semidefinite programming (SDP) problems. To approximate
constraint C7, we reformulate it with the rank constraints of
two semidenifinite matrices. Specifically, we have rank(P ) =
|E| if and only if there exists a Z ∈ Sn such that

rank(Z) = |E|,

and

rank (U) ⩽ |E|, U =

[
I|E| P T

P Z

]
,

where Sn is the set of symmetric n×n matrices. Based on the
theorem in [17], we have that when e = 0 and U is a positive
semidefinite matrix, rank(Z) = |E| and rank(U) ⩽ |E| are
equivalent to

V T
p ZVp > 0, and eIn −W TUW ⪰ 0

where the vector Vp ∈ Rn×1 is the eigenvector corresponding
to the n− |E|+ 1 smallest eigenvalue of Z, and the matrices
W ∈ R(n+|E|)×n are the eigenvectors corresponding to the n
smallest eigenvalues of U .
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Fig. 2. Accuracy of interference graph estimation

TABLE I
SIMULATION PARAMETERS

#Antenna per BS 100 BS distance 15-200m
Time slot length 1ms Tx power range 800-1200mW

Carrier frequency fc 28GHz Noise spectrum -174dBm/Hz
Total bandwidth 250MHz BS density ≥ 500BSs/km2

Replacing the rank constraints with the SDP ones, we can
solve P3 by iteratively solving the following problem:

min
P (t),Z(t),e(t)

∑
i∈C

∑
k∈K

p
(t)
(i,j)[k] + w(t)e(t) (7a)

s.t.
(
V (t−1)
p

)T

Z(t)V (t−1)
p > 0 (7b)

e(t)In −
(
W (t−1)

)T

U (t)W (t−1) ⪰ 0 (7c)

0 ≤ e(t) ≤ e(t−1) (7d)
C5, C6, C7 (7e)

Z(t) ⪰ 0,U (t) ⪰ 0 (7f)

where p(t)(i,j)[k] is ptx(i,j)[k] at the t-th iteration, W (t−1) includes
the eigenvectors of U (t−1), and w(t) is a weighting factor
increasing with the iteration count t. The starting point at
the 0-th iteration can be obtained by solving Eq. (7) without
constraints (7b)-(7d) as in [17]. At the first iteration where
t = 0, e(0) is the n-th smallest eigenvalue of U (0).

V. PERFORMANCE EVALUATION

The performance of our proposed joint optimization is eval-
uated via simulations. The simulation parameters are chosen
to simulate a typical 5G mmWave backhaul network, as listed
in Table I. Our experiment simulates a small cluster of dense
BSs, where BSs are randomly located in a 0.01km2 square
field with density more than 500 BSs/km2. The mmWave
channel model consists of a LOS component and a scattering
component with independent and identically distributed entries
as in [8]. Each BS has access to a uniform linear array (ULA)
with 100 antennas. The angle-of-arrival (AoA) at each BS
is the direction from which the strongest signal strength is
detected, which are used to estimate the transmit and receive
beamforming vectors of BSs. The MCSs are randomly selected
for UEs and UEs are assumed to have heavy demands, which
require at least 80% of total time slots.

Channel gain estimation. Let the actual and estimated equiv-
alent channel gains between links (s, l) and (k, z) be denoted
as g(s,l),(k,z) and ĝ(s,l),(k,z), respectively. We measure the error
of channel gain estimation as 10 log10

(
ĝ(s,l),(k,z)/g(s,l),(k,z)

)
in dB, which is equal to zero when the actual and estimated
channel gains are equal and increases in its absolute value
as the measured one deviates away from the actual one. Fig.
2(a) shows the boxplot of the estimation errors using our
approach under different network sizes, where the network size
is measured by the number of links in the backhaul network.
We can see that our approach achieves small estimation errors
below 1dB for almost all the links, with half of the estimation
errors less than 0.2dB. The estimation errors slightly increase
with the network size due to increasing number of concurrent
transmissions, which causes more severe interference. The
increasing number of interferers weakens the linearity between
the transmit and received powers of nodes and thus results in
larger estimation errors.

We also find that small channel gains are prone to large
estimation errors. Fig. 2(b) shows the estimation errors with
respect to the channel gain ratios, where gmax is the maximum
channel gain in a network layout. We can see that smaller
channel gains tend to have larger estimation errors. Luckily,
links with small equivalent channel gains have weak interfer-
ence to each other, mitigating the impact of relatively large
estimation errors. Lastly, we want to compare our approach
with CSI-IM reference signals. Fig. 2(c) shows the estimation
errors under different TOs, where the TO is normalized with
respect to CP. We find that the CSI-IM achieves very small
estimation errors when TO is less than CP, as expected.
However, as TO exceeds CP, the estimation errors continue to
increase until TO reaches 15 (CP takes 7% of OFDM symbol
time), where the TO is equal to a OFDM symbol time in
our experiment. In contrast, our approach is robust to TO and
achieves very small estimation errors under all TOs.
Power overhead. Our approach uses power as a new di-
mension for interference measurement and thus may have
extra power overhead. We compare our approach with the
pure resource allocation scheme not considering IGE (i.e.,
P2) in terms of power consumption. Let P1 and P0 denote
the power consumption in our approach and the pure power
resource allocation scheme, respectively. We define power
overhead as (P1−P0)/P0. Fig. 3 shows the boxplot for power
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Fig. 3. Power overhead

overheads under different network sizes, where 100 random
layouts are used for each network size. The positive power
overheads indicate that our approach estimates the interference
graph at the cost of power consumption. Fortunately, even the
worst power overhead is below 3% and the average is below
1%. Further, the power overhead in general decreases as the
network size increases, because the extra power consumption
needed for power control increases slower than the total power
consumption of the network.

VI. CONCLUSION

In this paper, we proposed to use power as a new dimen-
sion for interference graph estimation, such that it can be
done simultaneously with resource allocation, with no extra
frequency-time resources needed. To this end, we proved that
the mmWave backhaul network can be considered as a linear
system and that the interference graph can be measured with
power control. Our joint optimization of resource allocation
and IGE outperforms the reference signals in channel gain es-
timation for being more robust to timing and carrier frequency
offsets. Moreover, the overhead of our approach was showed
to be very small by experiments. As future work, we will apply
the joint framework to other wireless networks.
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APPENDIX A
PROOF OF LEMMA 1

Since v[i] ∼ CN (0, σ2
vI), E[ṽ[i]] = E[ω̃T

(k,z)v[i]] = 0

and E
[
|ṽ[i]|2

]
= ω̃T

(k,z)E
[
v[i]v[i]H

]
ω̃∗

(k,z) = σ2
v . Let

F(s,d),(k,z)[i] = ej2πiϕ(s,z)h(s,d),(k,z)x(s,d)[i− µ(s,d)]. The ex-
pected receive power of node z can be calculated by omitting
the items multiplying ṽ[i] as

E[|y(k,z)[i]|2]

=
∑

(s,d)∈E

|h(s,d),(k,z)|2E
[∣∣x(s,d)[i− µ(s,d)]

∣∣2]
+

∑
(s,d)∈E

∑
(l,v)∈E

(l,v)̸=(s,d)

E
[
F(s,d),(k,z)[i]F

∗
(l,v),(k,z)[i]

]
+ σ2

v .

Since x(k,z)[i] and x(s,d)[i] are independent for (k, z) ̸= (s, d),
we have E[x(k,z)[i]x(s,d)[i]

∗] = E[x(k,z)[i]]E[x(s,d)[i]
∗] = 0,

where E[x(k,z)[i]] = 0 for all (k, z)’s, because x(k,z)[i] =
1√
N

∑N−1
m=0 X(k,z)[m]ej2πim/N and E[X(k,z)[m]] = 0 for 1 ≤

m ≤ N . This implies that when (k, z) ̸= (s, d),

E
[
F(s,d),(k,z)[i]F

∗
(l,v),(k,z)[i]

]
= qE

[
x(s,d)[i− µ(s,d)]

]
E
[
x∗
(l,v)[i− µ(l,v)]

]
= 0,

where q = h(s,d),(k,z)h
∗
(l,v),(k,z)E∆ϕ

[
ej2πi∆ϵ

]
and ∆ϕ =

ϕ(s,z) − ϕ(l,z).
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