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Abstract
Traditional wisdom for network management allocates

network resources separately for the measurement and data
transmission tasks. Heavy measurement tasks may take up
resources for data transmission and significantly reduce net-
work performance. It is therefore challenging for interfer-
ence graphs, deemed as incurring heavy measurement over-
head, to be used in practice in wireless networks. To ad-
dress this challenge in wireless sensor networks, we propose
to use power as a new dimension for interference graph es-
timation (IGE) and integrate IGE with concurrent flooding
such that IGE can be done simultaneously with flooding us-
ing the same frequency-time resources. With controlled and
real-world experiments, we show that it is feasible to effi-
ciently achieve IGE via concurrent flooding on the commer-
cial off-the-shelf (COTS) devices by controlling the transmit
powers of nodes. We believe that efficient IGE would be a
key enabler for the practical use of the existing scheduling
algorithms assuming known interference graphs.
Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Wireless
Communication
General Terms

Measurement, Experimentation, Performance
Keywords

Interference graph, concurrent flooding, BLE, IoT
1 Introduction

Interference graphs, depicting the channel conditions be-
tween network nodes, are a key element for resource man-
agement in wireless networks. Given an interference graph,
we can estimate the interference of each node to other nodes
in the network and allocate network resources (e.g., power,
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time, and frequency) in a proper manner. Extensive re-
source allocation schemes have been proposed for wireless
sensor networks assuming the availability of the interference
graphs [6, 14, 18]. However, compared to its usage, the ad-
vances in the efficient measurement of interference graphs
are still lacking, which greatly hinders the practical use of
existing resource allocation schemes in wireless sensor net-
works. Efficient interference graph estimation (IGE) has
great potential in unleashing the power of resource schedul-
ing in wireless sensor networks.

Traditional wisdom for network management is to allo-
cate network resources (i.e., time and frequency) separately
for the measurement and data transmission tasks. In other
words, the measurement and data transmission tasks have to
compete for the time and frequency resources. As a result,
on the same channel, the measurement tasks, if not done ef-
ficiently, will significantly reduce the opportunities for data
transmission. Unfortunately, under the traditional wisdom
for network management, IGE inherently incurs high mea-
surement overhead: a N-node network includes O(N2) to-
tal links, which consumes at least N slots for measurement,
where one node sends a reference signal to all the other nodes
for channel estimation in each slot [2, 29]. Such high mea-
surement overhead makes the traditional wisdom not scal-
able for large networks, not to mention network dynamics
requiring frequent updates on the interference graph. To re-
duce the measurement overhead, another popular approach
is to characterize interference by modelling based on the
propagation environment, where model parameters are pre-
determined and no measurement is needed. Similarly, sev-
eral recent works have assumed the existence of a direct
mapping between node attributes, e.g., geolocation, and re-
source scheduling decisions, which can be learned from a
large amount of network layouts by deep learning [8, 17].
Without active measurements, these approaches lack the
ability to track network dynamics.

In this paper, we propose to integrate measurement tasks
into data transmission tasks, contrary to the traditional wis-
dom of separating them, such that the measurement tasks can
be conducted together with the data transmission tasks, with-
out reserving time resources solely for conducting the mea-
surement tasks. To achieve this, our core insight is to de-
compose the superposition of the received signal strengths
from multiple concurrent senders into the signal strengths of
individually attenuated transmit powers in the data transmis-
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sion tasks. Specifically, our approach assumes the linearity
of received power: the received power of a listener is a linear
combination of the channel gains and the transmit powers of
the senders. By varying the transmit powers of the senders,
we can obtain different received powers of the listener. Then,
the channel gains can be obtained by solving a group of equa-
tions, if the received powers of the listener and the transmit
powers of the senders are all known.

Although the core insight is intriguing, it is difficult to
find a suitable data transmission task for integration, which
should at least satisfy the following two requirements: 1)
it needs to be conducted in a well-synchronized network,
such that the signal strength measured by the listener in a
period can be matched to the set of the senders transmitting
in the same period; 2) the received powers from concurrent
senders are additive for the linearity assumption of received
power to be true. The second one is challenging to satisfy,
requiring not only strictly-synchronized concurrent senders
for data transmission, but also understanding of the features
and imperfections of the commercial off-the-shelf (COTS)
devices.

Fortunately, we find a perfect match between IGE and
concurrent flooding, a technique with increasing popular-
ity in the lower-power wireless networking based on con-
current transmission (CT). Riding on the tide of concurrent
flooding, IGE can be easily introduced into wireless sensor
networks. In concurrent flooding, senders rebroadcast re-
ceived packets in strictly-synchronized time slots, with sub-
microsecond synchronization accuracy. This feature of con-
current flooding is crucial for the linearity of received power.
We show with controlled experiments that the linearity of
power conditionally holds. After understanding the condi-
tions for power linearity to hold, we propose a power control
approach for IGE, which requires controlling the transmit
powers of nodes across multiple slots to form a full-rank ma-
trix. We first design controlled experiments to show that IGE
is feasible via power control. After that, we integrate IGE
with a recent low-power flooding protocol, BlueFlood [24],
to demonstrate the feasibility of IGE via concurrent flood-
ing. We believe that efficient IGE is the key enabler for the
practical use of many existing network resource scheduling
algorithms that assume known interference graphs.

In summary, we make the following key contributions:
(1) We propose to marry the challenging measurement task
of interference graph estimation with the data transmission
task of concurrent flooding, to conduct interference estima-
tion simultaneously with concurrent flooding.
(2) We conduct experiments to reveal several non-linearity
issues of power to show that the linearity assumption condi-
tionally holds under both BLE 5 PHYs and IEEE 802.15.4.
(3) We implement IGE atop BlueFlood to demonstrate that
IGE via concurrent flooding is feasible in real-world envi-
ronment.

2 Background & Related Work
Interference graph estimation. Traditional wisdom for net-
work management allocates separate network resources for
the measurement and data transmission tasks, resulting in
the competing relation between the two types of tasks. To
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Figure 1. An example of IGE with power control

control the measurement overhead, cellular networks lever-
age their capabilities in fine-grained resource allocation and
only insert the CSI-IM reference signals on a small portion
of subcarriers to measure interference [9, 25]. However, low-
power COTS devices typically do not have such capabilities
and use the whole bandwidth either for measurement, con-
trol, or data transmission [22, 27]. This makes the heavy
measurement tasks, e.g., IGE, not suitable for wireless sen-
sor networks, despite that extensive works have shown the
benefits of knowing the interference graph in wireless sen-
sor networks [5, 10]. Our work proposes to avoid the heavy
measurement overhead of IGE by integrating it into a popu-
lar flooding technique in recent years.
Concurrent flooding. Glossy achieves fast and efficient
network flooding in a strictly-synchronized network under
IEEE 802.15.4, where senders rebroadcast received packets
in each slot [12]. A recent work, BlueFlood, extends con-
current flooding to Bluetooth 5 [1]. Due to the CFOs be-
tween concurrent senders, the receiver will see beating pat-
terns with periodic hills (constructive interference) and val-
leys (destructive interference) [19], which are found under
both Bluetooth PHYs and IEEE 802.15.4 [16]. Beating pat-
terns are strong when the received signal strengths from two
concurrent senders are close, causing burst errors due to deep
valleys with weak signal strengths [3]. When the received
signal strength from one sender is much larger than the rest,
the beating patterns are weak and the capture effect domi-
nates, similar to data transmission with no beating [15]. Our
work extends the use of concurrent flooding for IGE, which
can later be used for network resource scheduling.
Interference-aware scheduling. Interference graphs are ex-
tensively used for the resource management in wireless net-
works [4, 28]. An efficient approach to IGE could greatly
unleash the power of resource scheduling for wireless sen-
sor networks. For example, with an interference graph, each
sender can choose a proper transmit power to control its in-
terference to others [13], and more senders can be sched-
uled to transmit at the same time for better spatial reuse [7].
Moreover, CT can avoid strong destructive interference with
power control given the interference graph.

3 Interference Graph Estimation
3.1 Core Insight
An example. In Figure 1, nodes 1 and 2 send a packet to
node 3 concurrently in two time slots. In slot 1, nodes 1 and
2 send to node 3 with the transmit powers of 1mW and 2mW,
respectively, and node 3 receives at 1µW. In slot 2, nodes 1
and 2 change their transmit powers to 2mW and 1mW, re-
spectively, and node 3 receives at 1µW. Assuming that the
received power of node 3 is a linear combination of the trans-
mit powers of nodes 1 and 2, we can have two equations for
the two slots and obtain h13 = h23 = 0.001, where hi j is the
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Figure 2. Experimental setup

channel gain from node i to j.
Linearity assumption of received power. This example
makes an important assumption about the linearity of re-
ceived power, making it possible to estimate the channel
gains by solving a system of equations. The linearity of re-
ceived power is a common assumption for interference mod-
elling in wireless networks [11, 23], but past measurement
studies have reported different observations [21, 26]. We will
conduct a comprehensive measurement study of the power
linearity in §3.2.
Full-rank constraint. This example has a unique solution
for the channel gains because the two equations are linearly
independent. To generalize this, we want the transmit power
matrix, with each row being the transmit powers of nodes
in a slot, to be full-rank, such that the channel gains have a
unique solution.
3.2 Power Linearity on the COTS Devices
Two properties of linearity. Under the linearity assumption,
the received power of node i from two concurrent senders can
be expressed as

prx
i = h1i ptx

1 +h2i ptx
2 , (1)

where prx
i and ptx

i are the received and transmit powers of
node i, respectively. This assumption entails two properties
of received power, both of which need to be examined on
the COTS devices: 1) proportionality, which requires the re-
ceived power to be proportional to the transmit power, i.e.,
prx

i→ j = hi j ptx
i , where prx

i→ j denotes the received power of
node j solely from node i; 2) additivity, which requires the
received powers to be additive, i.e., prx

i = ∑ j prx
j→i.

Experimental setup. We want to examine the two properties
of linearity on the COTS devices. To avoid external interfer-
ence, we conduct our experiments by connecting all nodes
with cables. Figure 2 shows the setup with multiple concur-
rent senders and one receiver, where the attenuators are used
to control the received power from each sender at a granular-
ity of 1 dB, and the RF combiner is to mix signals from the
concurrent senders. Depending on the specific experiments,
different numbers of concurrent senders may be used. All
nodes are equipped with the Nordic nRF52 series SoCs to
study both Bluetooth 5 and IEEE 802.15.4. Each node sends
a packet of 255 bytes to allow sufficient time for the receiver
to take RSSI samples. With a sampling rate of 106 samples
per second, the receiver collects 1,200 RSSI samples contin-
uously and calculates the average as the received power.
Proportionality between Tx and Rx powers. We expect
the received power to be proportional to the transmit power,
while hardware imperfections may affect the proportional-
ity. To examine this, we need one sender and one receiver
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Figure 3. Proportionality between Tx and Rx powers

for experiments. Figure 3 shows the received powers un-
der different transmit powers and attenuations for nRF52840
SoCs, where the cable and RF combiner together contribute
about 3dB attenuation. We can see that the received power
increases by almost the same amount in dB as the transmit
power does in the linear region, where the transmit power is
below or equal to 0dBm and the received power is between
-90dBm and -20dBm. The linear region closely matches the
valid operating range (-90dBm to -20dBm) for the received
power of nRF52 series, and nonlinearity starts to become sig-
nificant when the received power is below -90dBm. We are
surprising to find that when the transmit power is greater than
0dBm, it severely deviates from the linear relation with the
corresponding received power. Since there is a sudden jump
in deviation for the transmit powers greater than 0dBm, the
culprit is likely to be the inaccuracy of the transmit power.
Additivity of received power. We next want to know if the
additivity assumption of received power is true on the COTS
devices. We start by checking this assumption under the sim-
ple case of two concurrent senders and one receiver. The
metric to measure power linearity, referred to as the power
ratio, is defined as the ratio of the actual received power to
the sum of individually attenuated powers from the senders.
A power ratio close to one indicates strong additivity, and the
additivity weakens when the power ratio deviates from one.
We conduct experiments with transmit and received powers
in the linear region to exclude the disproportionality issue
above. For nRF52 series SoCs, there are only 7 choices for
the transmit powers below or equal to 0 dBm. We create
granular power deltas between the received powers with ad-
justable attenuators. To simulate the case that senders in con-
current flooding forward the same packet, we simply ask the
two senders to transmit all ones.

Figure 4(a) shows the distribution of power ratios, where
about 88% of power ratios fall within the range between 0.9
and 1.1. Since the operating range of the received power
is critical to power linearity as discussed before, we next
relate power ratios with the received power. Figures 4(b)
and 4(c) show the power ratios under the strong (-40dBm
to -20dBm) and weak (-80dBm to -60dBm) received pow-
ers, respectively, where the received powers are divided into
equal-length bins of 4 dB and the centers of the bins are used
as labels for the x- and y-axes. We can see that the power ra-
tio highly depends on the strength of received powers in the
region of strong received powers, where the average power
ratio gradually decreases from 1.11 to 0.71 when the re-
ceived powers both increase from -40dBm to -20dBm along
the diagonal. The additivity of received powers is the best
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Figure 4. Conditions for the additivity of received powers

when both the received powers are centered around -32dBm
or when the received powers differ significantly from each
other. The power ratio gradually approaches to 1 as the
power delta between received powers increases, because the
larger received power dominates. For weak received pow-
ers, except for the region near (-68dBm, -68dBm), all other
regions have power ratios close to 1. In general, apart from
the strong received powers greater than -24dBm, weak and
strong received powers demonstrate similar addivitity.
3.3 Full-rank constraint

Suppose that there are n senders in a time-slotted multi-
hop network. Each node can measure the received signal
strength in a time slot it does not transmit data. Let the
transmit and received powers of node i at the j-th slot be
denoted as ptx

i [ j] and prx
i [ j], respectively. The channel gain

from node i to node j is hi j, and the channel gain vector,
hhhi = [h1i, . . . ,hni]

T ∈ Rn, includes the channel gains from
all senders to node i. At a time slot, if the power linear-
ity holds, we can write the received power as a linear com-
bination of the channel gains and the transmit powers, i.e.,
prx

i [ j] = ∑
n
z=1 hzi ptx

z [ j]. We assume that the channel coher-
ence time is much larger than the slot time. By varying
the transmit powers of senders across time slots, we can ob-
tain a different received power for node i in each slot. Let
ppprx

i ∈ Rm be the received powers of node i in m time slots,
and P∈Rm×n be the corresponding transmit power matrix of
the senders, where each row of the matrix dictates the trans-
mit powers of senders in a time slot. We can have that

ppprx
i = Phhhi. (2)

If the rank of the transmit power matrix, rank(P), is equal to
n, i.e., P is full-rank, we can obtain a unique solution for hhhi.
In order for rank(P) to be greater than n, the number of time
slots, m, should be greater than or equal to n.
3.4 IGE: Controlled Experimental Study

Before discussing how to achieve IGE via CT-based
flooding, we first want to validate with experiments that IGE
is feasible on the COTS devices. To this end, we use five
senders and one receiver in our setup, where the senders are
synchronized by a short synchronization packet from the re-
ceiver and transmit packets with the BLE 1M mode, as be-
fore. To construct a full-rank transmit power matrix, we ask
each sender to pick a random transmit power in the linear
region for each transmission after the time is synchronized.
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Figure 5. Feasibility of interference graph estimation on
the COTS devices

This process is repeated until we have sufficient measure-
ments for each combination of transmit powers. Let the i-th
combination be ccci = [ptx

1 [i], . . . , ptx
n [i]]

T . We need at least n
combinations to construct a full-rank matrix for n senders.
We calculate the channel gain error as |ĥi j − hi j|, where ĥi j
is the estimated channel gain for hi j in dB.

With the measurement data above, we first want to un-
derstand if averaging multiple measurements for the same
combination of transmit powers helps the channel gain esti-
mation. We calculate the channel gain errors when different
sample sizes are used to calculate the average transmit pow-
ers for each combination. There is no significant improve-
ment for using a larger sample size, which implies that our
measured received powers for the same node are stable. We
continue this experiment using single samples of received
powers to estimate channel gains. Based on the perturba-
tion theory for linear systems, we know that the estimation
error of channel gains, ĥi j, depends on the condition num-
ber of P [20]. We thus estimate the channel gains using dif-
ferent combinations of transmit powers (or transmit power
vectors) and obtain a relation between the estimation error
and the condition number. We can see from Figure 5(a) that
the average channel gain error decreases together with the
condition number. When the total number of transmit power
vectors forming the full-rank matrix is more than 11, the con-
dition number starts to decrease at an extremely slow rate.
This agrees with the perturbation theory in that a large con-
dition number amplifies the measurement errors and results
in a large estimation error. When choosing among candidate
transmit power matrices, we prefer the one with a smaller
condition number.
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The perturbation also suggests that it is more difficult to
estimate smaller channel gains. To verify this, we use the ad-
justable attenuators to create different combinations of chan-
nel gains from the five senders to the receiver. In total, 30
combinations of channel gains are created and each is esti-
mated using a full-rank matrix. Based on Figure 5(a), we
use 11 transmit power vectors for the channel gain estima-
tion. Our experimental results show that the largest channel
gains experience the least estimation errors and that more
than 90% of channel gain errors are less than 3 dB for both
Bluetooth and 802.15.4 (Figure 5(b)). This means that if the
available transmit powers are more than 3dB apart, the es-
timated channel gains can then be used to choose the best
transmit powers with a very high probability.

4 Efficient IGE via CT-based Flooding
This section presents how to integrate IGE with CT-based

flooding such that interference graph can be estimated simul-
taneously with flooding.

4.1 Flooding with IGE
In a time-slotted multi-hop network, flooding requires

each node to retransmit the received packet for the following
Ntx consecutive time slots, where Ntx is the required number
of retransmissions. Like Glossy, we assume that flooding
is conducted round by round, each including a fixed num-
ber of slots. Figure 6 shows an example of flooding with
IGE in a two-hop wireless network, where the senders and
receivers are represented by the solid and empty circles, re-
spectively. In slot 1, the initiator broadcasts a packet to all
the rest nodes. Hop-1 nodes are within the communication
range of the initiator and thus can receive the packet, while
hop-2 nodes can only measure the weak signal strength from
the initiator for being beyond the communication range. In
slot 2, hop-1 nodes have received the packet from the ini-
tiator and begin to rebroadcast it, together with the initiator.
We assume that the initiator uses the same transmit power for
both slots 1 and 2. Based on the additivity of received power,
since hop-2 nodes have measured the interference from the
initiator in slot 1, by subtracting the interference from the to-
tal received power in slot 2, they can obtain the strength of
signals solely from hop-1 nodes. This implies that nodes in
the same hop can vary their transmit powers across rounds to
form a full-rank matrix for estimating the channel gains from
themselves to their next hops. In this example, the two hop-

Flood

Power control
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Flood

Update period

Flood FloodFloodFlood Flood
IGE

Figure 7. Interference graph update for flooding

1 nodes transmit at 1mW and 2mW in round 1, respectively,
and simply switch their transmit powers in round 2. This
constructs a 2×2 full-rank matrix for estimating the channel
gains from hop-1 nodes to hop-2 nodes.

From the above example, we know that by carefully con-
trolling the transmit powers of nodes in the same hop, we
can estimate the channel gains from these nodes to their next
hops. As power control does not interfere the flooding pro-
cess, we can achieve IGE simultaneously with flooding. As
shown in Figure 7, interference graph is updated periodi-
cally to adapt to the changing network conditions, where the
update period determines how often the interference graph
should be updated. It is noticeable that calculating channel
gains requires knowing the received powers of nodes that are
locally measured. We can simply assume that the calculation
of channel gains is conducted in a centralized way at the ini-
tiator and that each node needs to report their local measure-
ments back to the initiator during the IGE process. After a
plan for power control is created, the initiator disseminates it
to all the nodes and each node will adjust its transmit power
accordingly. To reduce communication overhead, the plan
for each node can be simply represented by a number, i.e.,
the index of a set of pre-defined options, and the data collec-
tion and dissemination for IGE can be piggybacked onto the
normal network traffic, e.g., flooding and converagecast.

5 Flooding over Bluetooth
This section presents and evaluates the implementation of

our approach based on BlueFlood [24], a recent lower-power
flooding protocol implemented on the Nordic nRF SoCs. We
use Nordic nRF52840 nodes for system implementation and
experiments.
5.1 Experimental Setup
Implementation. In our implementation, we modify Blue-
flood to make each node capable of adjusting its configu-
rations according to a scheduling plan generated by a cen-
tral node, called the initiator. This scheduling plan specifies
how each node should adjust its transmit power in each time
slot. The transmit powers of all nodes in the same time slot
are represented as a transmit power vector, where the same
transmit power vector is used for the entire round. Suppose
that m transmit power vectors are used for IGE. This requires
each node to follow a sequence of m transmit powers span-
ning m rounds for data transmission. We require the duration
of IGE to be multiples of m rounds such that the received
powers of nodes under the same transmit power can be mea-
sured multiple times, to mitigate the randomness in single
measurements. During IGE, each node measures the aver-
age received power in each round when it is in listen mode
and sends back the estimates to the initiator. The initiator
will then obtain the received powers of nodes. Considering
the limited computing resources of the initiator, we currently
connect the initiator to a desktop, which estimates the chan-



Figure 8. Our testbed

nel gains and determines the transmit powers of nodes. The
received power is estimated as the average of received RSSI
samples.
Testbed and configuration. We run experiments in a testbed
deployed in our office, with an area of 10m×10m. The of-
fice layout and the locations of nodes are shown in Figure 8.
The deployed network is of three hops with node 1 being the
initiator. To demonstrate how our approach can effectively
mitigate the destructive interference due to CTs, we deliber-
ately choose the channel gains from nodes 4 and 5 to node 6
to be close and have a difference within 1dB. To mitigate the
impact of external interference, we enforce flooding to use
only a single channel, specifically, the Bluetooth advertising
channel 37. Other parameter settings are the same as what
BlueFlood used in [24], where a transmission-reception ratio
of NT x = 3 and a packet size of 38 bytes are used.
5.2 Performance Evaluation

We want to evaluate the accuracy of IGE in real-world
settings, to show that IGE with power control is feasible.
Accuracy of IGE. As flooding is from the initiator to down-
stream nodes, we only consider the downstream links from
each node to its next hops. To conduct IGE together with
flooding, we simply construct full-rank transmit power ma-
trices by shuffling available transmit powers in the linear re-
gion, such that transmit power vectors across rounds are dif-
ferent. In our network, the maximum of nodes in a hop is 2,
indicating that we need at least two transmit power vectors.
To understand the accuracy of IGE, we want to compare the
estimated channel gains from the flooding-based IGE against
those from the point-to-point channel estimation, which is
used as the ground-truth. The impact of channel variations
is mitigated by conducting the flooding-based and point-to-
point IGEs back to back. We repeat this back-to-back ex-
periments until we have 1500 rounds of measurement data,
where each IGE lasts for 30 rounds.

Figure 9(a) shows the distribution of channel gain errors
for flooding-based IGE when four transmit power vectors are
used. We can see that 60% of the estimated channel gains
have an error less than 3dB. For channel gains with an error
greater than 3dB, we compute its relative magnitude with the
maximum channel gain in the network and find that 70% of
the small channel gains are less than the maximum one for
more than 10dB, which significantly mitigates the impact of
large estimation errors. Compared with the controlled exper-
iments in §3.4, we find the channel gain errors are larger in
real-world environment due to varying network conditions.
To understand if using more transmit power vectors helps in-
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Figure 9. Accuracy of IGE on our testbed

crease estimation accuracy, we re-do the experiments above
using different numbers of transmit powers. Figure 9(c)
shows the boxplot of channel channel gain errors when two
to six transmit power vectors are used. It can be seen that the
range of estimation errors decreases sharply when the num-
ber of transmit power vectors increases from three to four.
By examining the condition numbers of the 4× 2 transmit
power matrices used in experiments, we find that the average
condition number is as small as 1.48, very close 1. Based on
the perturbation theory for linear systems, we know that the
choice of transmit power matrices in our experiments does
not significantly amplify the measurement errors and is not
a major source of error. Our experimental results show that
IGE via concurrent flooding in real-world environment ex-
periences larger estimation errors than in controlled experi-
ments, but is still feasible, where the channel gains with large
estimation errors are much smaller than those with small es-
timation errors.

6 Discussions & Limitations
Nonlinearity issues. Even though nearly 90% of the

power ratios in our experiments fall between 0.9 and 1.1,
but there are still some outliers beyond this range. We have
spotted several nonlinearity issues of power in the COTS de-
vices in §3.2, but there may exist more issues to discover.
However, the limited visibility into the hardware of nRF52
series SoCs may prevent us from diving deeper into the non-
linearity issues. The nonlinearity issues weaken the linear
relation between transmit and received powers and are thus
major sources of errors for the accuracy of IGE.

Overhead of IGE and optimization. Although our ap-
proach achieves IGE and flooding using the same frequency-
time resources, both the data collection and dissemination
for IGE incur communication overhead. We believe that the
communication overhead can be efficiently controlled with
several approaches: 1) reducing the frequency of IGE or only
conducting IGE when needed, 2) designing an efficient rep-
resentation for control and measurement data, and 3) pig-



gybacking these data onto normal traffic. Besides, estimat-
ing interference graphs also consumes computing resources.
We have done this with a destkop connected to the initiator,
which may not be necessary if the estimation can be con-
ducted efficiently within the low-power devices.

Broader impact of the interference graph. We have
demonstrated how to achieve IGE together with CT-based
flooding. In fact, as interference graphs are widely used
in wireless network resource management, the interference
graph estimated from concurrent flooding can also be used
to benefit many other network activities. Considering the
multi-faceted contributions of IGE to the network, the re-
lated overhead for measurement is worthwhile.
7 Conclusions

In this paper, we proposed to integrate interference graph
estimation into data transmission tasks such that it can be
done simultaneously with the data transmission tasks using
the same frequency-time resources. We showed that inter-
ference graph estimation on the Nordic nRF52 series SoCs
was feasible in both controlled and real-world experiments,
where the real-world experiments were done by integrating
interference graph estimation atop a recent low-power flood-
ing protocol. Our experimental results showed that concur-
rent flooding is a perfect carrier for this integration in wire-
less sensor networks. As for future work, we want to design
network protocols for collecting the RSSI measurements and
disseminating the plans for power control.
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