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A B S T R A C T

Internet load balancers typically use congestion-oblivious hashing algorithms to distribute traffic across
load-balanced (LB) paths, resulting in imbalanced load distribution. When congestion occurs, LB paths
could experience different levels of congestion, called congestion imbalance. Congestion imbalance has been
extensively studied in datacenters (DCs). It is, however, still under-explored in the Internet. In this paper, we
take a first step towards measuring congestion imbalance among Internet LB paths at scale. We present Congi,
our lightweight prober, that leverages support vector machine (SVM) classifiers to efficiently detect congestion
imbalance using latency samples. Our experiments show that Congi is capable of detecting congestion
imbalance between uncongested and congested LB paths: on average, the uncongested path has 3x greater
throughput and 0.4% lower packet loss rate than the congested one. To measure congestion imbalance at
scale, we then use Congi to conduct measurement campaigns from worldwide DCs to millions of/24s. We find
that most DCs experience significant congestion imbalance to 36%–43% of end hosts. Lastly, we use Congi to
direct web page downloads under congestion imbalance from a campus network, and show that the download
time can be reduced by 44% on average for Alexa top sites for clients experiencing network congestion under
congestion imbalance.
1. Introduction

When a load balancer learns of multiple paths to a destination, it
may update its routing table and distribute traffic to the destination
across these load-balanced (LB) paths. Load balancers are prevalent
in the Internet: nearly 74% of IPv4 paths traverse at least one load
balancer [1]. Load balancers typically select paths of equal cost for load
balancing and distribute traffic among these paths with simple hashing
algorithms. However, since these hashing algorithms are congestion-
oblivious [2,3], traffic could be directed towards a congested path,
even when there are less- or uncongested alternatives. We refer to this
problem as congestion imbalance, where LB paths experience different
levels of congestion and differ significantly in path performance.

Congestion imbalance has been mostly studied in datacenters (DCs)
[3,4], where paths between servers can be carefully planned to share
minimal common bottleneck links such that not all of the paths would
be congested at the same time. Congestion-aware load balancing thus
can better utilize bandwidth in DC networks. In contrast, despite the
prevalence of load balancers in the Internet, Internet LB paths are
likely to overlap [5,6]. We are not aware of any study reporting on the
prevalence of congestion imbalance in the Internet. In this work, we
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take the first step to measure congestion imbalance in the Internet at
scale. We want to understand the prevalence of congestion imbalance
and the extent to which it causes LB paths to differ in performance.
Considering that congestion affects all performance metrics (through-
put, latency, and packet loss) of a path, we expect that harnessing
Internet congestion imbalance would benefit a wide range of Internet
applications.

Broadly speaking, congestion imbalance exists as long as LB paths
experience different levels of congestion. As a first step, we limit
our focus on recognizing a congested path from an uncongested one,
without differentiating the congestion levels. To measure congestion
imbalance at scale, we need to address two major challenges: (1) how
to detect congestion, and (2) once a congested path is detected, how to
quickly search among a pool of LB paths for an uncongested path while
the congestion persists? To detect congestion, we probe paths from a
single vantage point (VP) to the public Internet. Network probing infers
path performance towards a destination based on its responses to the
probes. Due to rate limiting, probes sent to the same destination must
be controlled at a very low rate, making us unable to detect transient
congestion. We focus on congestion lasting from seconds to minutes,
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which affects many applications, e.g., web page load and VoIP. Our
approach can also be easily extended to detect the diurnal congestion
in [7].

Our approach uses latency inflation to infer congestion similar to
the Time Series Latency Probing (TSLP) technique [8]. However, to
detect congestion at scale (the first challenge), we cannot use latency
time series collected in the long term as in TSLP. Instead, we develop
Congi, our network prober that leverages a support vector machine
(SVM) classifier to detect congestion with a small number of latency
samples. As Congi is designed to detect congestion imbalance, not just
congestion, it also includes two SVM classifiers, focusing on the speed
nd accuracy of detection respectively, to detect uncongested paths.
he speed-focused classifier aims to fast search among LB paths for
otential uncongested paths, which are further verified by the accuracy-
focused classifier. We train these SVM classifiers on a ground-truth
dataset that we build from path performance data between a large
number of source–destination pairs.

We verify Congi’s performance with both trace-driven simulation
and real-world experiments, and find that Congi excels at detecting
significant congestion imbalance: the uncongested paths are on average
3x greater in throughput and 0.4% lower in packet loss rate than
the congested ones. In our large-scale experiments, to avoid affecting
end hosts, we ran Congi from 12 DCs around the globe to the last-
hop routers of end hosts. We found that most DCs experienced long
imbalance lasting 120 s to 9%–13% of the last-hop routers and short
imbalance lasting 24 s to 36%–43% of the routers (see Section 6 for
limitations). We further evaluated the impact of congestion imbalance
on web page load by downloading web resources using the congested
and uncongested paths respectively. We found that half of the down-
load times could be reduced by at least 53% using the uncongested
paths. In summary, this paper makes the following contributions:

• We show that it is feasible to detect the performance imbalance
between congested and uncongested paths with latency measure-
ments and conduct a systematic comparative study to choose the
best latency-based metric for congestion imbalance detection.

• We present Congi, a network prober leveraging SVM classifiers to
efficiently detect congestion imbalance at scale. We verify that
Congi is capable of detecting significant congestion imbalance
between LB paths.

• We run Congi to conduct large-scale measurement campaigns
and find that short-term congestion imbalance is prevalent in the
Internet. We also demonstrate that congestion imbalance greatly
affects web page load time.

2. Measurement methodology

2.1. Our goal

Congestion imbalance occurs between two addresses when the con-
necting LB paths experience different levels of congestion. In this work,
we simply categorize paths as either congested or uncongested, with no
further distinction of congestion levels. Congestion imbalance occurs
when an uncongested path exists concurrently with a congested one.
Our goal is to measure congestion imbalance at scale from a single
VP with network probing, assuming no direct access to a large number
of instrumented machines. We focus on measuring short-term conges-
tion imbalance lasting from seconds to minutes, which affects many
applications like web page load and video streaming. Nonetheless, our
approach can also be used to measure transient congestion imbalance
within sub-seconds, if probe rate limiting is not a concern, and to
2

measure long-term congestion imbalance.
Fig. 1. Overview of measurement methodology.

2.2. Overview of our methodology

We want to design Congi (short for Congestion Imbalance), a network
rober that collects latency samples to detect congestion imbalance
t scale. Fig. 1 shows the high-level overview of our measurement
ethodology. We must address two key questions: (1) Can we dif-
erentiate between congested and uncongested paths from their latency
amples?; (2) Can we detect congestion imbalance with a small number of
atency samples? To answer the first question, we conduct a systematic
tudy of latency-based metrics to select the best metric, such that
e can detect congestion-induced performance imbalance between LB
aths with latency time series. Using the best latency-based metric, we
nswer the second question by collecting large-scale datasets with well-
esigned network probing techniques and validate that it is possible to
everage lightweight machine learning techniques to efficiently detect
ongestion imbalance detection even with a small number of latency
amples.

A positive answer to the first question requires the existence of a
atency-based metric capable of such differentiation. Specifically, we
ant to build a dataset of path performance and use it to check if

he latency-based metric can classify paths such that paths identified
s ‘‘congested’’ and ‘‘uncongested’’ differ significantly in performance.
his dataset can be collected by measuring performance of all LB paths
etween source–destination pairs, which is a very resource intensive
rocess. Instead, we collect the performance of one path continuously
ver a long period of time and check if a metric can differentiate
etween congested and uncongested periods of the path. This not only
implifies data collection, but also ensures that congestion would be the
eason for performance degradation with all other factors being equal.
n intuitive way to build such a dataset is to use publicly available
atasets with validated congested and uncongested periods. However,
o the best of our knowledge, the most related public datasets only
rovide databases of time series together with analysis scripts to infer
ongestion and no associated throughput and packet loss measurements
re made available [7]. We thus collect a dataset, referred to as the
ath-perf dataset, including the real performance data (latency, through-
ut, and packet loss) of paths (Section 2.3.1), and experiment on several
atency-based metrics (latency elevation, latency deviation, and latency
nflation). We find that latency elevation (increase in mean latency) is
he best metric, capable of differentiating congested and uncongested
eriods of a path (Section 2.3.3), and also excels at detecting congestion
mbalance across multiple paths (Section 3.2).

To answer the second question, we want to find classifiers capable
f accomplishing the same task above but with a very small number
f latency samples. Although the latency-based metric enables us to
etect congestion imbalance without actually measuring throughput
nd packet loss rates of LB paths, it relies on long running latency
ime series to be effective. To find proper classifiers, we create a large
ataset consisting of latency time series, each labeled by the latency-
ased metric as being of a congested or uncongested path (Section 2.5),
nd use this dataset to train classifiers. These lightweight classifiers
nable us to scale the detection of congestion imbalance. We combine
hem to build Congi, verify its ability to detect congestion imbalance
Section 3.2), and conduct measurement campaigns from VPs around
he globe to Internet-wide addresses (Section 4).
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2.3. Choosing the latency-based metric

The intuition behind a latency-based metric is that when a path is
congested, its capacity is over-utilized, causing packets to be buffered
and resulting in inflated measured latency. Dhamdhere et al. [7] have
shown that inflation in latency time series can be used to detect
congested periods. However, we are not aware of any study to compare
different latency-based metrics and to systematically explore their use
in detecting congestion periods. In this section, we will compare alter-
native metrics for describing latency inflation and determine thresholds
that properly separate congested periods from uncongested ones. We
start by the collection and processing of the path-perf dataset that
includes the performance data of a diverse range of paths.

2.3.1. Data collection: The path-perf dataset
We use this dataset to evaluate several latency-based metrics, which

involves correlating path latency with throughput and packet loss. In
this dataset, the path metrics (latency, throughput, and packet loss) are
collected for each path included. As public clouds enable us to easily
access computing resources in DCs around the globe, we create virtual
machines (VMs) in DCs as our VPs. For throughput measurement, we
run the Network Diagnostic Tool (NDT) test from our VPs to M-Lab NDT
servers [9]. Since we use latency to infer congestion, our latency and
throughput measurements do not overlap in time, to avoid self-induced
latency inflation by throughput tests. The TCP trace made public by M-
Lab only provides latency during TCP sessions and thus does not fit our
needs [9].

Measurement Methodology We want to measure latency and
throughput for the same path between a source–destination pair, in-
cluding both the forward and return directions. As 98% of load-
balanced paths include only per-flow and per-destination load bal-
ancers, traffic with the same flow identifier (source IP, destination IP,
source port, destination port, protocol ID) will follow the same path
when there is no path change [5]. Given a source–destination pair, we
enforce all measurement traffic to use the same source and destination
ports. Since NDT tests use TCP, we measure latency to the NDT hosts by
sending TCP ACK to the port numbers used in NDT tests. The measured
latency of the path is the elapsed time between sending the TCP ACK
and receiving the corresponding TCP RST. Measured packet loss rate is
the percentage of TCP ACK probes without responses.

To understand how latency is correlated with throughput, we want
latency and throughput to be measured under various network condi-
tions, including both congested and uncongested periods. Since collect-
ing one latency sample only takes one probe, we periodically measure
path latency to all NDT servers in parallel. In contrast, each NDT test
measures upload and download TCP throughput separately, each taking
about 10 s. We only run one NDT test from each VP to a target server
at the same time to avoid multiple NDT tests competing for bandwidth.
Considering the overheads of throughput measurements and that con-
gested periods are typically less common than the uncongested ones,
it is impractical and unnecessary to periodically measure throughput
to all NDT servers. We instead drive NDT tests by latency variation:
we trigger a NDT test to measure a path when the path latency is
seen varying, and follow up with another NDT test when the path
latency returns back to stable. In this way we distribute throughput
measurements more evenly between paths of varying and stable laten-
cies, and still covers paths within the full range of latency variations.
Moreover, we want to focus on latency variation due to congestion
rather than path changes, where path latency during congestion is
constantly varying while a path change causes path latency to suddenly
increase or decrease and remain stable afterwards. We thus want latency
variation to be robust to sudden latency changes and define it as
the average absolute difference between neighboring latency samples,
i.e., ∑𝑛

𝑖=1
|

|

𝑟𝑖 − 𝑟𝑖−1|| ∕(𝑛 − 1), where 𝑛 is the number of samples and 𝑟𝑖 is
the 𝑖th latency sample. We further mitigate the impact of path changes
3

with data processing (Section 2.3.2) and analysis (Section 2.3.3). w
Fig. 2. An example of time series segmentation.

Experiment Setup We used 12 geographically-distributed VPs (2
in Europe, 5 in Asia, 2 in North America, 1 in South America, 1 in
Africa, and 1 in Oceania) and measured path performance from these
VPs to 471 NDT-7 (NDT version 7) servers [10] to create this dataset.
As cloud providers may differ in how they route traffic from their DCs
to the public Internet [11], these 12 VPs are further distributed evenly
among 3 cloud providers (Google Cloud, Microsoft Azure, and Alibaba
Cloud).1 Each VP sent TCP ACK probes to all NDT-7 servers every 2 s to
measure path latency and packet loss. Latency variation was calculated
every 60 s with the most recent 90 latency samples, where samples
below the 10th percentile and above the 90th percentile were not used,
to mitigate the impact of outliers. For each source–destination pair, we
triggered a NDT test when latency variation was greater than 2 ms,
a relatively small threshold to capture small latency changes. When a
NDT test was done, we waited at least 15 min before checking if the
latency variation returned back to stable (below the threshold) and we
could conduct a follow-up NDT test.

2.3.2. Data processing: Time series segmentation
We want to prepare the dataset for correlating latency with through-

put and packet loss. Specifically, given a latency time series between a
pair of VP and NDT server, we want to (1) segment it into periods of
varying latency (or varying periods) and periods of stable latency (or sta-
ble periods) such that latencies in the same period reflect the same state
of the path, and (2) match each period with the throughput samples
measured in it. Note that a varying period is not necessarily a con-
gested one because apart from congestion, other factors, e.g., delayed
responses, could also cause varying latency [12]. A congested period
is a varying period that actually causes performance degradation. We
will find proper thresholds for concluding if a path is congested or
uncongested in Section 2.3.3. In the following, we first discuss the
current method of detecting varying periods and its drawbacks, and
then introduce a more accurate method for time series segmentation.

Drawbacks of the Current Detection Method Observing that la-
tency samples in varying periods are typically inflated and have higher
means than those in stable periods, Dhamdhere et al. [7] proposed to
use latency mean shifts in time series to identify varying periods. Their
method uses a moving window to sequentially scan the latency time
series and, with a statistical test, checks if there is a mean shift in the
moving window. This method relies on a moving window, including
only a partial view of the entire time series, to make decisions and is
thus prone to false positives when the entire moving window is in a
varying period. Moreover, the statistical test can detect level shifts but
is not capable of telling the exact boundary between varying and stable
periods, which is critical for segmenting time series.

An Improved Method: Changepoint Detection To address the
above issues, we introduce a new method called changepoint detection,
which detects mean shifts by observing the entire time series [13].
Specifically, the changepoint detection method segments the time series

1 We did not have VPs in Amazon AWS for this dataset because the
ownload TCP throughput from the NDT-7 servers to our VPs in Amazon DCs
as throttled to a low level, which decorrelated latency and throughput.
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Table 1
The path-perf dataset summary.

Cloud
providers

#VP-Server
pairs

#Throughput
samples

#Latency
samples

Google Cloud 342 1,903 22,239,395
Alibaba Cloud 629 2,683 30,464,281
Microsoft Azure 627 2,789 40,717,975

into time periods with different means. Let 𝑃𝑖 be the 𝑖th period, 𝑦𝑖𝑗 be
the 𝑗th sample in 𝑃𝑖, and 𝑚 be the number of periods. The optimal
segmentation is obtained by minimizing the loss function

min
{𝑦̄1 ,…,𝑦̄𝑚}

𝑚
∑

𝑖=1

∑

𝑦𝑖𝑗∈𝑃𝑖

|𝑦𝑖𝑗 − 𝑦̄𝑖|
2 + 𝛽𝑚,

where 𝑦̄𝑖 is the latency mean of the 𝑖th period and 𝛽𝑚 is a penalty term
to avoid overfitting. We use one of the common choices for the penalty
term, i.e., the Bayesian Information Criterion penalty by setting 𝛽 to
𝜎2 log(𝑛), where 𝑛 is the total number of samples and 𝜎2 is the variance
of samples [13]. The ruptures package [14] is used to segment time
series in our dataset. The minimum period length is set to 15 samples
to obtain periods lasting for at least 30 s (inter-sample time is 2 s). The
minimum period length is chosen to be relatively small such that short
varying periods can still be detected.2 Fig. 2 shows an example of time
series segmentation with the changepoint detection method, where we
can clearly see the boundaries between neighboring periods. As a result
of path changes, neighboring periods could be both stable. We treat
individual periods separately as each period presents a different state
of the path.

Matching Segmented Periods with Throughput Samples After
time series segmentation, it is straightforward to associate each seg-
mented period with the throughput samples measured in it by time.
We need to handle some edge cases where throughput samples are
measured close to the boundaries. To avoid associating throughput
samples with the wrong periods, we only use throughput samples
measured at least 10 s away from both the start and end times of their
associated periods.

2.3.3. Comparative study of latency-based metrics
Table 1 summarizes the path-perf dataset, which only counts the

VP-server pairs (pairs of VP and NDT server) that have at least one
varying and one stable periods, both with throughput samples. Google
Cloud has the least number of VP-server pairs, likely because probes
from VPs in Google Cloud to NDT servers spend most of their times
traversing Google’s well-provisioned private WANs [11,15]. Since we
run only one NDT test at a time from each VP, when the paths to
multiple NDT hosts have varying latencies, only one will be measured—
the others would have to wait for future rounds of measurement. This
case happens more often for the VPs in Alibaba Cloud and Microsoft
Azure, leaving them with fewer throughput samples for each pair, on

2 A long minimum period forces the method to consider short varying peri-
ds as noise and may result in long stable periods with short varying periods
nside them. A very short minimum period makes the method over-reactive to
utliers.
4
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average. To compensate for this difference, we run experiments longer
for VPs in Alibaba Cloud and Microsoft Azure. We next use this dataset
to compare different latency-based metrics.

We want to find a latency-based metric that can differentiate be-
tween congested and uncongested periods of a path by the gap in
path performance during these periods. We will compare three metrics
describing latency inflation from different aspects: (1) latency elevation,
the difference between latency mean and the minimum path latency,
(2) latency deviation, the standard deviation of latency samples, and (3)
inflation level, the percentage of inflated latency samples.

Defining the Performance Gap We define the performance gap
between the congested and uncongested periods for two path met-
rics, throughput and packet loss. For each source–destination pair,
the throughput gap is defined as the ratio of the average throughput
during congested periods to that during uncongested ones, also referred
to as the throughput ratio. Similarly, the packet loss gap is defined as
the difference between the average packet loss rate during congested
periods and that during uncongested ones. We use the average path
performance to alleviate the impact of measurement errors that are
infrequent but difficult to exclude. For example, we could not tell if low
throughput during a stable period is because the bottleneck link, though
uncongested, has high utilization [16] or because the NDT server is
under heavy load, which we want to exclude as it is not network
related. Path change is also one source of such measurement errors,
where changes, if not occurring on the bottleneck link or not incurring
a new bottleneck link, do not affect throughput and packet loss.

Ability to Maximize Throughput Gap To compare the alternative
metrics, we use each metric to classify periods in our dataset as con-
gested or uncongested, and calculate the throughput gap between the
congested and uncongested periods. The best metric is the one that
achieves the maximum throughput gap. Given a metric, we consider
a period congested if the metric calculated from the latency samples
uring the period is above a pre-defined congestion threshold; otherwise,
e consider the period uncongested. Per the definition of throughput
ap, it can only be calculated for pairs having at least a congested
eriod and an uncongested one. This means that the number of pairs
ith a throughput gap is determined by the choice of the metric and the

ongestion threshold. In our results, when we use the latency elevation
etric with a congestion threshold of 3 ms, the number of pairs with
throughput gap reaches the maximum, and is about 47% of the total
P-server pairs in our dataset. We consider this the total number of
vailable pairs and calculate the coverage (i.e., the percentage of pairs
ith a throughput gap) at other congestion thresholds with respect to

his number.
To mitigate the impact of outliers and path changes, we estimate

he minimum path latency at time 𝑡 as the 10th percentile of samples
overed in a 30-minute interval centered at 𝑡. Fig. 3(a) shows the
hroughput gap/ratio and coverage under different congestion thresh-
lds when latency elevation is used as the metric, where each box
epresents the distribution (10th, 50th and 90th percentiles) of through-
ut ratios for the given threshold. We can see that as the congestion
hreshold increases, the throughput ratio decreases, indicating a larger
hroughput gap. Meanwhile, the coverage also decreases, which implies
hat a higher throughput gap is achieved at the cost of coverage, a
radeoff between throughput gap and coverage. When the congestion

hreshold is 15 ms, we can achieve a median throughput ratio of
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0.33 and cover 60% of available pairs. The average throughput ratio
between the 10th and 90th percentile is only 0.37.

Figs. 3(b) and 3(c) show the throughput ratios when latency devia-
tion and inflation level are used as the metrics. We calculate standard
deviation with the samples between the 10th and 90th percentiles and
consider a sample inflated if it is larger than the minimum latency for
10 ms. Using standard deviation with a threshold of 6 ms can achieve
a median throughput ratio of 0.37 but covers only 45% of pairs, which
is much less coverage than using latency elevation. Using an inflation
level of 0.7 achieves both similar coverage and throughput gap as
using latency elevation with a threshold of 15 ms, but it underperforms
latency elevation in terms of the smallest throughout ratio that can be
achieved. We use latency elevation as the best latency-based metric and
15 ms as the congestion threshold to obtain a good tradeoff between
throughput gap and coverage. We next discuss the ability of latency
elevation to describe the packet loss gap.

One Threshold or Two? Given that the congestion threshold is
15 ms, we calculate the packet loss gaps for available pairs and find
that 11% of pairs have a negative packet loss gap. This implies that
some pairs have their congested periods misidentified as uncongested,
resulting in the packet loss rates in uncongested periods higher than
those in congested ones. We revisit our way to differentiate between
congested and uncongested periods, and find that the culprit is that
since only one threshold is used to separate the congested periods
from the uncongested ones, there is a sudden switch in categorization.
We thus add a second threshold to identify uncongested periods and
enforce a buffer region between the two thresholds. A period is uncon-
gested if it has latency elevation below the second threshold. We refer to
the range from zero to the second threshold as the non-congestion range.
Fig. 3(d) shows the packet loss gaps under different non-congestion
ranges, where the 10th percentile packet loss gap approaches zero
when the non-congestion range is 7 ms or less. The use of a buffer
region may reduce the coverage. We calculate the coverage at different
non-congestion ranges with respect to that when the buffer region is
zero, i.e., both the non-congestion range and the congestion threshold
are 15 ms. We use 7 m as the non-congestion range, which reduces
coverage by 15%. Note that the two thresholds are chosen to maximize
the performance difference between LB paths in a collective way such
that we can characterize congestion imbalance at scale. No definitive
conclusion can be made on the actual cause of degraded performance
at the path level.

Relating Latency Elevation with the Packet Loss Gap After the
non-congestion range is determined, we can calculate the packet loss
gaps under different congestion thresholds. As shown in Fig. 3(e), both
the median and mean packet loss gaps increase with the congestion
threshold. This provides additional validation that latency elevation is
an effective latency-based metric in separating congested periods from
uncongested ones. Nonetheless, it is noticeable that compared with
the throughput gap, the packet loss gap is in general very small, with
the median being as low as 0.6% when the congestion threshold is
15 ms. It is more interesting to look at the packet loss gaps in the
high percentiles, where the 75th and 90th percentiles are about 3% and
10% respectively. We refer to this method of using latency elevation
and thresholds to identify congested and uncongested periods as the
metric-based method.

2.4. Building a ground-truth dataset

The main drawback of the metric-based method is that it relies
on long latency time series. We want lightweight classifiers that can
achieve a similar accuracy in detecting congested and uncongested
paths as the metric-based method but does so with much fewer samples.
Specifically, we (1) want a dataset consisting of the latency time series
of paths, where each time series is labeled either belonging to a con-
5

gested or uncongested path, and (2) train the classifiers to determine g
if a path is congested or uncongested with a small portion of samples
from its latency time series.

Large-Scale Ground-Truth Dataset Instead of using the path-perf
dataset, we want the ground-truth dataset to be of a larger scale and
include a more diverse range of paths such that the classifiers can be
accurately trained and perform well when used in real-world scenarios.
To create such a large-scale dataset, we collect latency time series from
VPs in DCs around the globe to a large amount of random IPv4 Internet
addresses. Since we want the classifiers to achieve similar performance
as the metric-based method, we apply the metric-based method on the
collected data to construct the ground truth.

Data Collection We randomly select addresses from the IPv4 In-
ernet address space and probe from 12 geographically-diverse VMs
o the last-hop routers of these addresses to avoid affecting the end
osts. Latency is measured as the elapsed time between sending a UDP
robe with the TTL expiring at the last-hop router and receiving the
CMP response from it. For each target, we force all UDP probes and
CMP responses to take the same path by sending UDP probes with the
ame source and destination ports [11]. The rate of UDP probes sent
o each router is controlled at 0.5 packet/s, unlikely to cause packet
rop due to ICMP rate limiting on routers [17]. To capture short-term
ongestion of various durations, we periodically measure each last-hop
outer for 1 h and stop immediately once there is a path change, which
s detected by path discovery to the last-hop router every 5 min with
TL-limited probes. After 7 days of measurements in October 2020,
e collected latency and path information from our VPs to 342,139

nternet addresses, where each target has 1,800 latency samples.
Data Labeling We first segment latency time series into periods of

ifferent latency means with the changepoint detection method. For
ach period, we calculate the latency elevation and label those with
atency elevation greater than 15 ms as ‘‘congested’’, less than 7 ms as
‘uncongested’’, and the rest as ‘‘undetermined’’.

.5. Training Congi’s SVM classifiers

Given a target, Congi first collects data with its probing module and
hen uses its SVM classifiers to detect congestion imbalance with the
ollected data.
Accuracy- and Speed-Focused SVM Classifiers Congi includes two

ypes of SVM classifiers: the accuracy-focused and speed-focused classi-
iers. The accuracy-focused classifiers aim to detect both congested and
ncongested paths with high accuracy, while the speed-focused classifiers
im to detect uncongested paths with a reasonable accuracy but with
uch fewer samples. For each target host, Congi starts the probing

y detecting congestion with an accuracy-focused classifier, because
f an uncongested path is misclassified as congested, all subsequent
easurements, e.g., the search of an uncongested path, will be wasted.
ongi also ends the probing by reconfirming congestion imbalance with
he accuracy-focused classifiers. The speed-focused classifiers are used
o search for an uncongested path once a congested path is detected.
etween a source–destination pair, there could be tens of LB paths [18].
t is crucial to check each path fast such that an uncongested path can
e found while congestion persists. We choose SVM as our classifiers
ecause the separating hyperplane between classes is determined only
y the data points near the hyperplane (a.k.a. support vectors). This
akes it more robust to outliers compared to logistic regression, which

s crucial to mitigate the impact of occasional spikes in latency time
eries. Moreover, if needed, we can separate non-linearly separable
lasses by mapping them to higher dimensional spaces with non-linear
ernels [19]. Lastly, it is simple to integrate SVM with our network
rober written in C++. More efficient machine learning classification
lgorithms are subject to future research.3

3 We have compared SVM with several other common classification algo-
ithms. SVM outperforms logistic regression, random forest, and decision tree
y 2 to 5% in F1 score when the sample size is small, but the performance
ap diminishes as the sample size increases.
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Fig. 4. Tuning inter-sample time (IST).

Creating Training and Testing Datasets from the Ground Truth
he ground-truth dataset above includes a collection of labeled latency
ime series. For each time series, Congi’s classifiers only take a small
ortion of samples as input. The process of picking these samples from
he time series simulates how probing works. There are two design
arameters for probing, the number of samples to collect (denoted as 𝑚)
nd the inter-sample time (denoted as 𝑑). As different probing schemes

lead to different data being collected, we will train the SVM classifiers
on datasets collected under different 𝑑’s and 𝑚’s to choose the best
scheme.

Consider a probing process with 𝑚 = 3 and 𝑑 = 4s. To simulate
this process on a ground-truth time series (inter-sample time is 2 s),
we first randomly select a sample in the time series as the start point
(the 1st sample) and then select the 3rd and 5th samples as input to
the classifiers. As probing could begin from any sample within the time
series, we repeat the probing process at different start points to average
out randomness. Let 𝑑∗ and 𝑚∗ denote the upper bounds of 𝑚’s and
𝑑’s in the design space. To simulate a probing scheme with 𝑚 = 𝑚∗

and 𝑑 = 𝑑∗, we need latency time series of length at least equal to
𝑙∗ = 𝑑∗×(𝑚∗−1)+1. We require each time series in the dataset to support
simulating the probing scheme with 𝑚 = 𝑚∗ and 𝑑 = 𝑑∗ such that
all probing schemes with 𝑑’s and 𝑚’s within the upper bounds can be
simulated on the same dataset for fair comparison. Another issue of this
dataset is that we have much more uncongested paths than congested
ones. We handle this imbalanced class problem by randomly selecting
the same amount of uncongested and congested paths in the dataset
before simulating the probing process. For each pair of 𝑑 and 𝑚, this
random selection is repeated to average out randomness. We use two
thirds of the data for training and the rest for testing.

Classifier Training for Detecting Congested Paths As mentioned
in Section 2.4, our dataset includes three classes of paths (congested,
uncongested, and undetermined), which implies that this is a multi-
class classification problem. As we are not interested in detecting the
undetermined paths, we take a one-versus-rest approach to detect the
congested and uncongested paths respectively [20]. That is, when our
goal is to detect one class, we consider it as the positive class and
the rest two together as the negative class. This requires us to have
separate classifiers for detecting the congested and uncongested paths.
Considering the number of samples as input to the classifiers is limited,
we generate a feature from each sample and form a feature vector
of dimension equal to the number of samples. Specifically, given 𝑚
samples, we form a 𝑚-dimensional feature vector by (1) considering the
minimum sample as the minimum latency, (2) subtracting it from each
sample to obtain the inflated part, and (3) sorting the inflated parts of
all samples in an increasing order.

Fig. 4 shows the precision in detecting congested paths under
different 𝑚’s and 𝑑’s, where a linear kernel is used and the precision
is the fraction of true positives among all claimed positives. We can
see that the precision increases gradually with the sample size, but the
improvement becomes very marginal when the sample size is greater
than 12. As the sample size becomes larger, samples are more likely
to include outliers far away from other samples, which causes more
uncongested paths to be misclassified as congested and counteracts
6

e

Fig. 5. Performance in detecting congested paths.

the improvement by using a higher dimension. We can also see a
slight improvement in precision by using a larger inter-sample time
(IST), because a larger IST makes samples more independent from each
other and is thus more likely to result in larger difference between
latency samples for congested paths. Considering that the improvement
for using a large inter-sample time is limited and that congestion is
typically short-lived, we want probing to be done fast and thus choose
the inter-sample time to be 2 s.

In Fig. 4, all 𝑚 samples are used to construct the feature vector.
e wonder if excluding the extreme samples that might be outliers

ould improve precision and that how kernel selection affects precision.
ith the inter-sample time being 2 s, Figs. 5(a) and 5(b) show how

eature and kernel selection affects the precision and recall in detecting
ongested paths, where ‘‘all’’ means that all samples are used for
rediction and ‘‘partial’’ means that only samples between the 10th and
0th percentiles are used, to exclude outliers. When a percentile lies
etween two samples, the smaller one is used for the 10th percentile
nd the larger one is used for the 90th percentile. In Fig. 5(a), the
cheme of using partial samples begins to drop samples when the
ample size reaches 10, which results in a lower-dimensional feature
ector and causes a sharp decrease in precision. This indicates that
he precision gain by excluding outliers cannot cover the precision loss
ue to using a lower-dimensional feature vector. We therefore use all
amples as input for prediction. Comparing the two schemes of using all
amples in Figs. 5(a) and 5(b), we find almost no difference in precision
etween using a linear and a radial basic function (RBF) kernels and a
light 1% difference in recall when the sample size is 10. When the
ample size is 12, using both kernels achieves a high precision of 95%
nd a high recall of 94%.
Classifier Training for Detecting Uncongested Paths We want

o train two types of classifiers for detecting uncongested paths: an
ccuracy-focused classifier and a speed-focused classifier. The uncon-
ested paths constitute the positive class and the other two classes
ogether constitute the negative class. We train these classifiers for
etecting uncongested paths similarly to the way we train the classifiers
or detecting congested paths described in the previous subsection.

e find that for both classifiers with a linear and a RBF kernels, the
recision and recall increase with the sample size and the increase rate
egins to slow when the sample size reaches 8 (not shown). When the
ample size is 8, using a RBF kernel results in a precision of 94%, almost
he same as using a linear kernel, and a recall of 87%, about 2% higher
han using a linear kernel. For the speed-focused classifier, we want
small sample size that can provide a reasonable precision and recall

uch that each LB path can be checked quickly. When the sample size is
, using a RBF kernel achieves a precision of 88% and a recall of 81%,
hile using a linear kernel achieves a precision of 91% and a recall
f 76%. Since a high recall is desired while searching for uncongested
aths, we choose the RBF kernel for the speed-focused classifier.

.6. Putting it all together to build Congi

Congi probes targets in parallel and the total sending rate depends
n the number of targets being probed simultaneously. The probing to

ach target is a three-stage process.
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Stage I: Detecting Congestion Given a target, Congi first detects
f congestion exists in a path to the target. To avoid affecting the end
osts, we can use the last responding router along the path to the target
s a proxy and measure congestion imbalance from the source to the
outer. This means that all probes are still sent to the target with TTLs
xpiring at its last responding router such that congestion imbalance
een by the router will also be seen by the target. To force all probes
o take the same path, Congi sends UDP probes with the same source
nd destination ports. To avoid triggering ICMP rate limiting, Congi
ends one UDP probe to the router every 2 s until the 12 samples are
ollected. Congi then feeds the 12 samples into its accuracy-focused
lassifier to detect congestion. If no congestion is detected, Congi moves
n to the next target; otherwise, Congi enters into stage II. It is possible
hat the target router has a very low budget of ICMP responses and
rops most of our probes. Congi allows a packet loss rate less than 30%
or each target and stops probing a target if the packet loss rate is above
he threshold. Note that although UDP probes are used above, Congi
an also use other types of probes.
Stage II: Searching for an Uncongested Path Once a congested

ath is detected, Congi begins to search for a new path to the router and
heck if it is uncongested. This process is repeated until an uncongested
ath is found or failed to be found after 15 trials. The discovery of
ew paths is done by sending UDP probes to random destination port
umbers. Although the paths of UDP probes are passively selected by
oad balancers based on their port numbers, with a sufficiently large
umber of trials, we can discover an uncongested path, if one exists,
ith a high probability. For instance, assuming that LB paths have
qual probability of being taken by UDP probes with random port
umbers, even when the portion of uncongested paths is less than
0% among all LB paths, Congi can still find one with a probability
f 1 − 0.915 = 79.4% with 15 trials. This is more efficient than finding
ew paths by hop-by-hop comparison with the previously probed ones.
ote that although UDP probes may take different forward paths due

o having different port numbers, all ICMP responses take the same
eturn path because Congi manipulates UDP probes such that ICMP
esponses can have the same checksum, the factor that load balancers
se to determine the paths ICMP packets take [11]. For each new path,
ongi has to estimate the TTL from the source to the target router.
ongi uses the TTL of probes in the congested path as reference and
earch neighboring TTLs (±2) for the new path. Once a new path is
ound, Congi collects 4 samples and use the speed-focused classifier to
heck if this path is uncongested. If so, Congi continues to collect 4
ore samples and verify this with the accuracy-focused classifier. Congi

ither enters into Stage III after a successful verification or returns back
o finding a new path if the verification fails.
Stage III: Collecting More Samples Congi collects more samples

for both the congested and uncongested paths for two reasons. First, as
it takes time to find the uncongested path, during which the congestion
may have ended, Congi confirms congestion imbalance with the most
recent 12 samples of each path at the end of the probing. Second,
we want to collect 30 samples for each path to estimate their mean
path latencies for later study of the latency imbalance between LB
paths (Section 4.3). Based on the central limit theorem, when the
sample size is 30 or more, we can use the sample mean to estimate
the population mean regardless of the population distribution [21].

3. How Congi actually performs?

We verify Congi’s ability to detect congestion imbalance with trace-
driven simulation and real-world experiments.

3.1. Trace-driven simulation

We use the path-perf dataset to simulate how Congi works and
7

expect it to detect similar throughput and packet loss imbalance as
Table 2
Trace-driven simulation.

Method Throughput ratio Packet loss gap

25th 50th 75th Meana 25th 50th 75th Meana

Metric-based 0.11 0.32 0.58 0.35 0 0.4% 3.3% 1.6%
Congi 0.09 0.28 0.61 0.34 0 0.5% 5.5% 2.0%

a Mean of the samples between the 10th and 90th percentiles.

Fig. 6. Ability to detect throughput imbalance.

the latency-based metric does in Section 2.3.3. Recall that in the path-
perf dataset, each throughput sample is associated with a segmented
period of latency samples. We use Congi to determine if a period is
congested or uncongested based on its latency samples and compute
the throughput and packet loss gaps as in Section 2.3.3. To simulate
how Congi works, for each throughput sample, we feed the 12 latency
samples measured right before starting the throughput test into Congi’s
accuracy-focused classifier to detect congested paths. If the result comes
back positive, we then feed the 12 latency samples right after the
completion of the throughput test into the same classifier. We consider
the associated period congested if both the results are positive. We
check congestion both before and after the throughput test to ensure
that the throughput sample is measured while congestion persists.
Similarly, we consider the period uncongested if both the results come
back positive from Congi’s accuracy-focused classifier for detecting
uncongested paths. Table 2 compares the throughput ratios and packet
loss gaps under Congi and the metric-based method. We can see that
Congi achieves similar throughput ratios and slightly better packet loss
gaps at different percentiles compared to the metric-based method. This
verifies that we can detect congestion imbalance with a small number
of latency samples.

3.2. Real-world experiments

We next verify Congi’s ability to detect the throughput and packet
loss imbalance with real-world experiments.

Detecting Throughput Imbalance We ran Congi to measure con-
gestion imbalance from VPs in 9 geographically-diverse DCs (3 DCs per
cloud provider) to 471 NDT-7 servers, where NDT servers are used as
destinations because we want to measure path throughput with NDT
tests. Each VP periodically detects congestion imbalance to all NDT
servers every 3 min. Once congestion imbalance is detected between a
congested and an uncongested paths to a NDT server, we immediately
stop Congi and measure throughput for each path respectively with
a NDT test. Since two back-to-back NDT tests take at least 40 s, it is
possible that congestion imbalance ceases during the NDT tests. After
the NDT tests are done, we resume Congi to collect more samples
and double check if congestion imbalance still exists. This ensures that
congestion imbalance persists when throughput samples are measured.

Among all congestion imbalance events detected by Congi, the
uncongested paths on average have throughput 3x greater than the
congested ones. The 25th, 50th, and 75th percentiles of throughput
ratios between congested and uncongested paths are 0.10, 0.28, and
0.60 respectively. This implies that Congi is capable of differentiating
between the congested and uncongested paths in real-world settings.
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Table 3
Prevalence of long imbalance.

Google Cloud Amazon AWS Microsoft Azure Alibaba Cloud

London Tokyo HKa London Tokyo Cali London Tokyo SPa London Tokyo Shanghai

Congestion 251K 171K 172K 331K 349K 339K 283K 295K 318K 362K 392K 1,693K
Long imbl. 15K 15K 16K 37K 48K 35K 36K 32K 39K 59K 43K 32K

% 6.0% 8.8% 9.3% 11.1% 13.7% 10.3% 12.7% 10.8% 12.3% 16.3% 11.0% 1.9%
a HK = Hongkong, SP = Sao Paulo.
oreover, by comparing the throughput gaps in the real-world ex-
eriment and the trace-driven simulation, we find that Congi, though
rained on the congested and uncongested periods of the same path,
an achieve similar throughput gaps between different LB paths in
he real-world experiment. This validates our design choice of using
he performance data of the same path to train Congi’s classifiers in
ection 2.5.

Fig. 6 shows the distribution of throughput ratios for four DCs. The
igure shows that Alibaba Tokyo’s and Microsoft Sao Paulo’s DCs have
he two smallest mean throughput ratios of 0.22 and 0.26, and that
oogle’s DCs in Hongkong and North Virginia have the two largest
ean throughput ratios of 0.43 and 0.46. We can see that although

hroughput imbalance varies across DCs, all DCs experience significant
ongestion imbalance on their paths to NDT servers. The average
hroughput of uncongested paths from Alibaba Tokyo’s DC was almost
x that of the congested paths. For the simplicity of design, Congi uses
he same set of classifiers for all DCs and may achieve larger throughput
mbalance when customized for each DC.
Detecting Packet Loss Imbalance Packet loss rate is a statistic

calculated from a large number of collected samples. To obtain the
packet loss gap between two paths, we want to find a long time period
wherein both paths remain in the same state (having either constantly
varying or stable latency), and calculate the packet loss rate for each
path in the period. This implies that we can create a dataset comprising
latency time series of LB paths, segmented into varying and stable
periods, to evaluate Congi’s ability to detect packet loss imbalance. We
build this dataset by alternately probing two random LB paths for each
selected VP-destination pair, where three VPs (each from a different
cloud provider) are used and destinations are the 471 NDT servers. We
measure only two LB paths at a time for each VP-destination pair to
control the probing rate to a destination at a low level. To mitigate
packet drops due to de-prioritization of ICMP responses, we use TCP
ACKs rather than ICMPs as probes. Upon completion of probing a pair
of LB paths, we segment the resulting latency time series using the
changepoint detection method in Section 2.4 and pair the segmented
periods of the two LB paths that overlap in time. The packet loss gap
is calculated for pairs where each period includes at least 200 samples
and congestion imbalance is detected.

We first use Congi to detect congestion imbalance for each pair,
where Congi picks a random starting point and takes samples from
each period. The 25th, 50th, and 75th percentiles of the resulting
packet loss gaps are 0, 0.2% and 0.8% respectively, with a mean of
0.4%. As this dataset includes latency time series of paths, we can
also apply the metric-based method to detect packet loss imbalance,
which achieves a mean packet loss gap of 0.3%. This verifies that
Congi can detect packet loss imbalance as the latency-based method
does. Nonetheless, we notice that the packet loss imbalance in this
dataset is much lower than that in the path-perf dataset ( Table 2). This
is because the path-perf dataset includes periods that have a higher
packet loss rate, with a mean of 3.7% for all involved periods (the
mean is 1.4% for this dataset). Looking at the error rate, we find that
Congi only mis-identifies congestion imbalance for 5.6% of pairs (with
a negative packet loss gap) in this dataset. The result aligns with our
8

design of Congi, which focuses on differentiating between congested
and uncongested paths, but makes no further distinction of congestion
levels.

4. Congestion imbalance: A cloud-centric view

We ran Congi from 12 DCs of 4 cloud providers to 10.8M routable
/24 s in the CAIDA’s IP-to-Prefix dataset [22]. The DCs are selected
from major cloud providers and are geographically-diverse to cover
different continents. This experiment took about 10 days in January of
2021. The average probing rate of Congi was controlled at 500 pack-
ets/second or approximately 110 Kbps to avoid self-induced queueing
delay. For each /24, we randomly select an address and probe to the
first responsive router closest to the address, so as not to affect the end
host.

4.1. Does Congi measure short or long congestion imbalance?

Recall that Congi checks congestion imbalance twice (in Stage II
and III respectively) in a complete cycle of probing a destination. We
refer to the initial congestion imbalance detection as short imbalance
and secondary detection as long imbalance. The initial detection differs
from the secondary detection in that the initial detection uses samples
collected in sequence for both the congested and uncongested paths,
whereas the secondary detection uses interleaved samples collected
alternately between the two paths. This results in the initial detection
being prone to false positives: an uncongested path is found because
congestion ceases early, causing all paths to be uncongested. We do
not use the sample interleaving method for initial detection because it
is inefficient when there is no congested path.

We first focus on the long imbalance measured by Congi and design
separate experiments to measure short imbalance later in Section 4.4.
Another detailed discussion of short imbalance can be found in Sec-
tion 5, where we use short imbalance as a guide for real applications.
In a complete cycle of probing, Congi collects 30 samples for each of
the two paths, which means that long imbalance lasts for at least 120 s
(inter-sample time is 2 s).

4.2. Prevalence of long imbalance

Table 3 summarizes the number of congestion events and long
imbalances seen by each DC in our experiments. Most DCs see long
imbalances to 9%–13% of probed addresses. Google Cloud observes
much less congestion than other cloud providers. This is due to Google
using its own, well-provisioned private WANs to route traffic to egress
points closest to the destinations [11]. For Alibaba Cloud, DCs in
London and Tokyo observe similar amounts of congestion as Amazon’s
and Microsoft’s DCs. This may be because unlike Google Cloud, they
rely on the public Internet to route traffic to destinations [11]. Alibaba
Shanghai observes a much higher level of congestion events than other
DCs, which indicates the presence of persistent under-provisioning of
network resources between China and the rest of the world. Despite
that congestion events are frequent, Alibaba Shanghai has the lowest
percentage of congestion imbalance among all DCs, because when
congestion occurs, almost all LB paths are congested.
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Table 4
Prevalence of short imbalance.

Detection
method

Google Cloud Amazon AWS Microsoft Azure Alibaba Cloud

London Tokyo HKa London Tokyo Cali London Tokyo SPa London Tokyo Shanghai

Interleaved 24% 36% 40% 30% 38% 37% 43% 42% 39% 36% 36% 6.6%
Non-interleaved 43% 62% 71% 64% 59% 58% 65% 62% 63% 58% 57% 29%

a HK = Hongkong, SP = Sao Paulo.
Fig. 7. Latency imbalance.

.3. Impact on latency imbalance

Congestion imbalance causes LB paths to differ significantly in
atency. We analyze the latency imbalance between LB paths under
ongestion imbalance from several aspects.
Imbalance in Latency ElevationWe first look at how much latency

s elevated under congestion imbalance in our large-scale experiments.
ne caveat is that we only have 30 samples for each path and simply
se the minimum sample as the minimum latency to roughly estimate
atency elevation, which may underestimate latency elevation when
ll 30 samples are inflated. Fig. 7(a) shows the distribution of latency
levation for the congested and uncongested paths separately and the
ifference in latency elevation between them. We can see that the
ongested paths have much more significant latency elevation than
he uncongested ones. The average latency elevation is 24 ms for the
ongested paths and 3 ms for the uncongested ones. This confirms that
ongi can detect significant latency imbalance between LB paths. More-
ver, about 15% of congested paths have latency elevation higher than
0 ms. We would expect that these congested paths experience severe
hroughput drop and have much less throughput than the uncongested
nes.
Imbalance in Latency Variation We next want to understand the

imbalance in latency variation, critical to interactive applications [23].
Specifically, we focus on latency spikes, which may be transient but
of significant magnitude. We define latency span as in [24], which is
the difference between the 90th percentile sample and the minimum.
Fig. 7(b) shows the distribution of latency span for all the congested
and uncongested paths. The uncongested paths have much more stable
latency than the congested ones. About 16% of congested paths have
latency span greater than 80 ms, meaning that for 16% of congested
paths, 10% of samples could experience latency spikes 80 ms higher
than the minimum path latency. The latency spikes are unlikely due
to ICMP responses traversing a slow path, because they occur mostly
on the congested paths and that Congi ensures that the congested and
uncongested paths use the same return path (Section 2.6). We also
compare the standard deviation of latency samples between congested
and uncongested paths. The average standard deviation is 14 ms for the
congested paths and only 1.3 ms for the uncongested paths.

Imbalance in Latency Mean We further look at the distribution
of the difference in mean latency between congested and uncongested
paths (not shown). About half of VP-destination pairs have a mean
latency difference greater than 17 ms, and 10% of pairs have a mean
9

latency difference greater than 80 ms. We also notice that about 10%
of pairs have an uncongested path with a higher mean latency than the
congested one. This implies that a path with lower latency is not always
the better choice as it could be congested.

4.4. Prevalence of short imbalance

As mentioned in Section 4.1, Congi achieves fast search of short im-
balance at the cost of accuracy. To better characterize short imbalance,
we design a separate experiment as follows. The method used in this
experiment is not very efficient. We employ it here to better understand
short imbalance but do not otherwise use it as part of Congi.

Experiment Design To reduce the false positive rate of short im-
balance detection, we use the interleaved sampling method originally
employed in Section 4.1 to detect long imbalance. Given a fixed probe
sending rate and a minimum number of samples required for each path,
the more LB paths we probe under this method, the longer the detection
will take. To detect short imbalance before it abates, we have to keep
the number of LB paths probed to the minimum. We determine the
number of LB paths to probe by considering the number of LB paths
probed in our previous experiment on measuring long imbalance in
Section 4.2. We find that short imbalance can be detected in nearly
half the cases by probing only two LB paths and if a third path is
added, short imbalance can be detected in about two thirds of the cases.
Unfortunately, adding a third path also makes the method less sensitive
to short imbalance, where only imbalance lasting 36 s or longer can
be detected (suppose the probing rate to a destination is 1 packet/s).
In this experiment, we probe two LB paths in parallel to detect short
imbalances lasting at least 24 s.

Data Collection and Experiment Results From each of our VPs
(used in Section 4.2), we alternately probe two LB paths in parallel to
1M random IPv4 addresses and collect 12 samples for each LB path.
Then, for each pair, we feed the samples of LB paths to Congi’s classi-
fiers to detect if short imbalance exists. Table 4 shows the percentage of
short imbalance seen by our VP in each DC. We can see that congestion
imbalance detected using interleaved sampling is much smaller than
that using non-interleaved sampling, and should reflect more closely
the actual percentage of short imbalance. Overall, except for Alibaba
Shanghai, short imbalance is significant and prevalent for all DCs.

5. Impact on applications

Since congestion affects all performance metrics (throughput, la-
tency, and packet loss) of a path, we would expect that congestion
imbalance has an impact on a wide range of applications. We use web
page load as an example to show how application performance would
be affected. We simply measure the performance of web page load with
the page download time. More sophisticated performance metrics are
out of the scope of this work.

5.1. Web page load

When loading a web page, a client browser resolves the dependency
between objects and issues a series of HTTP requests to download
the objects following the dependency chain. The total download time
is determined by each individual request on the longest dependency
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Fig. 8. Impact on web page load.

hain. To understand how congestion imbalance impacts the comple-
ion time of individual requests, we use Congi to monitor congestion
mbalance to servers hosting the Alexa top-1000 websites. We find the
argest object in a web page using the Chrome web browser’s Remote
ebugging Protocol (RDP). Since congestion imbalance may not persist,
e download the target object immediately after short imbalance is
etected. The object is fetched with HTTP requests along the congested
nd uncongested paths, and is downloaded twice for each path, where
he first download is to warm the cache and the second download is
sed to obtain the download time. All downloads are done serially, to
void self-interference.

We denote 𝑡1 and 𝑡2 as the respective download time for using
the congested and uncongested paths, and measure the reduction in
download time as (𝑡1 − 𝑡2)∕𝑡1, indicating the possible performance
improvement for clients using the congested paths under congestion
imbalance. Fig. 8 shows the distribution of download time reduction
for 500 downloads from a node in the campus network, where there
is sufficient bandwidth for the access link. We can see that the median
download time reduction is as high as 53% under congestion imbal-
ance. About 9% of downloads have a negative reduction in download
time, which indicates that using the uncongested path results in a larger
download time than using the congested path. This aligns with our
observation in Section 4.3 that uncongested paths may have longer
latency than the congested ones.

6. Discussion

Limitations. Although we have verified the congestion imbalance
between our VPs and NDT servers, we cannot do the same for our large-
scale experiments measuring imbalance to random Internet addresses.
We thus interpret our large-scale measurement results as providing a
coarse estimation of congestion imbalance. A more accurate large-scale
experiment can be done with user study or by content providers that
can directly infer throughput and packet loss imbalance from the traffic
between their servers and clients.

Implications. Our experimental results show that performance im-
balance between load-balanced paths is both significant and prevalent
in the Internet. The problem of congestion imbalance can be miti-
gated at different layers of the network stack. At the network layer,
congestion-aware load balancing algorithms can be designed. Instead
of relying on congestion-oblivious hashing algorithms, a closed-loop
control can be applied for load balancing, e.g., integrating the early
congestion notification (ECN) in the load balancing algorithm. At the
application layer, applications can carefully choose routing paths by
manipulating the port numbers, as shown in Section 5.

7. Related work

Topology and Latency Difference Between LB Paths. Since Paris
Traceroute was developed by Augustin et al. in 2006 [25], the topology
difference between Internet LB paths has been extensively studied [18,
26,27]. However, there are a very limited number of measurement
studies about the performance difference between LB paths. Augustin
10
et al. [5] first studied latency imbalance in 2007, which is the differ-
ence in the minimum latency between paths. In 2020, Pi et al. [11]
revisited the difference in the minimum latency between load-balanced
paths, which excludes latency inflation due to queueing. This work
complements the previous work by studying the difference in the
inflated latency between load-balanced paths, as well as the difference
in throughput and packet loss. As congestion events last temporarily, it
is hard to capture.

Latency-based Congestion Detection. The first step to detect con-
gestion imbalance is to find an effective way of detecting congestion in
the Internet. Latency inflation during TCP sessions has been used to in-
fer congestion for TCP congestion control since CARD [28], DUAL [29],
and Vegas [30] decades ago. In latency-based congestion control, the
estimated path latency is updated almost every round-trip time to infer
transient congestion [31,32]. Although our interest is not to detect
transient congestion that requires high-frequency latency samples, the
idea of using latency inflation as an indicator to congestion is also
applicable to detecting long-term congestion. In 2014, Luckie et al. [8]
proposed the time-series latency probes (TSLP) method that detects
persistent inter-domain congestion by observing elevated latency in
latency time series collected in the long term. After that, the TSLP
method was used to study the impact of congestion on the African IXPs
in [33] and was further improved and validated in [7]. Our work also
uses latency probes to detect congestion, but differs in three respects.
First, we conduct a comparative study of several latency-based metrics
for congestion detection to choose the best metric. Second, we propose
to detect congestion with a very small number of samples rather than
long-term latency time series, which enables congestion detection at
scale. Third, we conduct large-scale measurement campaigns from
VPs in DCs to Internet-wide addresses to show the prevalence and
significance of congestion imbalance. Congestion imbalance has also
been studied in DC networks [3,4,34] with the goals of promoting
congestion-aware forwarding rather than characterizing it.

Throughput Estimation and Modeling. Our work is also related
with those that use network probes to estimate available bandwidth
or throughput. Available bandwidth estimation techniques send a se-
quence of probes and use the change either in inter-probe time or
between the sending and receiving rates to estimate the available
bandwidth [35–37]. They generally have at least one of the following
drawbacks preventing them from being used to measure available
bandwidth at scale: (1) control is required at both the sender and the
receiver sides, e.g., Pathload [36] and Spruce [38]; (2) performance
varies under different network settings and there is no guarantee of
accuracy [39] and that (3) estimation may incur high measurement
overhead or require high resolution on inter-probe time [39]. Similar
to available bandwidth estimation, there are extensive research efforts
modeling TCP throughput with latency and packet loss [40,41]. He
et al. [42] show that using latency and packet loss measured before
a TCP session to predict TCP throughput could result in large errors
and provide significantly less accuracy than using those metrics mea-
sured during the TCP session. A recent work [43] greatly improved
the modeling accuracy by incorporating the congestion window size,
which however limits its usage to throughput prediction during TCP
sessions. Considering these drawbacks and limitations, none of the
works above provides a viable light-weight solution to characterize
throughput imbalance between LB paths at scale with network probing.

8. Conclusion

In this paper, we took the first step towards measuring conges-
tion imbalance at scale. We presented Congi, a network prober that
uses SVM classifiers to detect congestion imbalance with a very small
number of samples, which enables us to conduct large-scale measure-
ments. Congi was verified to be capable of detecting the imbalance
in throughput, packet loss and latency between LB paths. We used
Congi to measure congestion imbalance from our VPs around the
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globe to Internet-wide addresses, and found that short-term congestion
imbalance is prevalent and significant in the Internet. Taking web page
load as an example, we demonstrated that congestion imbalance greatly
affected application performance. For future work, we want to pinpoint
the networks responsible for congestion imbalance in the Internet and
characterize congestion imbalance when various access networks are
considered.
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