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ABSTRACT
The massiveness of the Internet makes it rather difficult to achieve
high-coverage monitoring at scale with reasonable overhead. The
traditional wisdom for scalable and high-coverage Internet moni-
toring is to consider clients in each /24 as a whole and only monitor
the representatives, either by active probing or by passive traffic
sniffing, such that performance of the rest can be predicted for high
coverage. There are two basic assumptions behind this traditional
wisdom: 1) clients in the same /24 have similar performance, and 2)
tracking all targeted /24s equates to full-coverage monitoring. With
the increasing prevalence of load balancing, both assumptions are
now questionable. Through large-scale measurements, we evaluate
the coverage and predictability issues of current practices, motivate
the necessity of link-level fine-grained, high-coverage monitoring,
and present new insights on how to achieve it. Our key findings are:
1) the current practices using the representatives of /24s may fail to
capture the changes of up to 85% of links in the Internet; 2) the path
difference between client flows to the same /24 is both significant
and prevalent; 3) it is possible to cover most of the visible links
from DCs to both small and large prefixes by carefully choosing
client flows; 4) high-coverage monitoring can be achieved with at
least three times less overhead than direct link monitoring.

CCS CONCEPTS
• Networks → Network measurement; Network monitoring.
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1 INTRODUCTION
Due to the rapid growth of cloud services, cloud providers have con-
tinued to expand and enhance their datacenters (DCs) and private
WANs over the past decade. Tremendous progress has been made
in developing highly performant and available intra- and inter-DC
networks [3, 13, 26]. In contrast, the public Internet, interconnect-
ing most users and the DCs, evolves slowly with persistent disputes
between ISPs over the provision of inter-domain links [18] and
severe performance degradation due to network disruptions [23].
As a result, the public Internet often becomes the bottleneck for de-
livering seamless cloud services, and cloud providers have a strong
incentive to closely monitor the public Internet for providing better
services to their clients.

Internet monitoring can be conducted using either passive, ac-
tive, or both types of measurements. Passive measurements could
be inferred from client traffic at the server’s side [16] or the inter-
mediate routers [11], while active measurements require sending
probes to the public Internet and observing the responses. With
worldwide clients, major cloud providers can easily collect passive
measurements for Internet monitoring. Small-sized cloud providers,
however, often need active probing to mitigate coverage issues.
For both small- and large-sized cloud providers, active probing can
augment the data density of infrequent clients and plays a vital role
in Internet debugging, e.g., fault localization [15] and root cause
analysis for congestion [8].

In this paper, we focus on using active probing to achieve large-
scale high-coverage monitoring at the level of IP links. With gran-
ular and wide-ranging knowledge of the Internet status, cloud
providers can take not only remedial actions for affected clients, but
also precautions against network degradations for future clients yet
to be affected, by steering client traffic to a different DC or switch-
ing egress points. Furthermore, IP-level link monitoring enables
cloud providers to better assist ISPs with fault localization and rate
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the quality of their network services. Despite all the benefits above,
fine-grained monitoring at the granularity of IP links is deemed
incurring too much overhead. For scalable Internet measurement,
current practices make two basic assumptions: 1) clients in the
same /24 are similar [6, 16], such that it is sufficient to only monitor
the representative of each /24 by active network probing [6, 7] or
by passive traffic sniffing [16]; 2) tracking the performance to each
/24 suffices for full-coverage monitoring. However, both assump-
tions are challenged by the increasing prevalence of load balancing,
which creates a vast number of paths between DCs and client and
causes the coverage and predictability issues of current practices.
As client flows to the same /24 become less similar and could differ
significantly in their paths, current practices lose their strengths in
performance prediction.

By conducting large-scale measurements, we evaluate the cov-
erage and predictability issues of current practices and provide
insights on how to achieve link-level fine-grained, high-coverage
monitoring with reasonable overhead. Specifically, we make the
following contributions:
(1) We evaluate the link coverage of two rule-of-thumb practices
for scalable Internet measurement from a cloud-centric view, where
DCs are used as vantage points in each continent to probe the pub-
lic Internet (§4.1). We find that up to 85% of links are not covered
by current practices, leaving critical links unwatched. This link cov-
erage issue is prevalent for networks in all six continents from the
views of two major cloud providers, namely, Amazon and Alibaba.
(2) We evaluate the predictability of performance for client flows
to the same /24s and find that the path difference between client
flows to the same /24 is both significant and prevalent (§4.2). Such
poor path similarity between flows indicates that performance pre-
diction cannot effectively mitigate the coverage issues above for
current practices.
(3) We propose to achieve high-coverage monitoring with an end-
to-end approach, which covers most of the visible links by carefully
selecting probing targets (§2.3). We show with experiments that
it is feasible to cover above 80% of visible links by probing each
selected target just once, and that this holds for both small and
large prefixes (§5.2).
(4) We estimate the overhead for high-coverage monitoring by
decomposing it into two determining factors: the scale of visible
links and the effectiveness of the end-to-end approach in cover-
ing visible links. We find that visible links scale much slower than
network size and are, on average, 3 times the scale of /24s (§5.1).
Further, the end-to-end approach can cover all visible links with
40% less overhead than direct link monitoring (§5.3). The overhead
can be further reduced by eliminating the long-tail effect in full
link coverage, where one flow only covers one more link (§5.4).

To promote reproducibility, we publish our tool and dataset at
github.com/SJTU-NMS-Lab/APNet23.

2 BACKGROUND & MOTIVATION
Internet monitoring with passive measurements is believed to per-
form well in regions with dense clients and capable of augmenting
data coverage with prediction in regions with sparse clients by
leveraging client similarities. Both the coverage and predictability
of passive measurements are challenged by the prevalence of load
balancing.

Last Hop
End-hosts
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Last-Hop Routers

F1

F2
F3

F4
Links of
Interest
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Figure 1: End-to-end approach to high link coverage

2.1 Load Balancing Worsens Coverage
Load balancing has been found prevalent both within and be-
tween autonomous systems (ASs) [9], where up to 90% of source-
destination pairs were reported to have a load balancer in be-
tween [2]. This results in a vast number of paths between DCs
and their clients. As passive measurements are collected from client
flows taking random load-balanced paths, using passive measure-
ments for Internet monitoring is equivalent to randomly sampling
Internet paths. The network coverage is totally determined by the
distribution of clients, and a skewed distribution of clients could
easily leave some critical links unwatched. These links, if congested
or failed, would affect all future client flows passing through.

2.2 Load Balancing Weakens Predictability
When two flows share most of the paths, it is easy to predict the
performance of one flow using the other, where similarity leads
to predictability. This is the rationale behind data-driven Internet
monitoring using passive measurements. However, the prevalence
of load balancing reduces the similarity between Internet flows,
weakening the power of passive measurements in prediction. Specif-
ically, load balancers can distribute traffic across different paths at
the levels of packets, flows, or destinations. Per-destination load
balancing may distribute flows across different paths for destina-
tions in the same subnet (e.g., in the same /24), while per-flow load
balancing may cause performance to vary greatly even for flows
between the same source-destination pair [21], let alone per-packet
load balancing. The decreased similarity makes it more difficult to
infer the performance of a network without actually probing it.

2.3 High-Coverage Internet Monitoring
The coverage and predictability issues above indicate that it is ideal
to monitor all links to the network of interest. However, not all
layer-3 links are discoverable by probes, and the overhead of full
link coverage is deemed intractable. We thus limit our focus on
high visible link coverage1, i.e., monitoring most of the visible IP
links to the targeted network to provide the best coverage possible,
where the last hops connecting end-hosts to the public Internet are
excluded, which can only be covered by abusively probing each
end-host.

Instead of directly probing each link, we want to take an end-
to-end approach to high link coverage by carefully selecting client
flows, such that most of the visible links are traversed by the se-
lected client flows. Since link problems affect the end-to-end latency,

1In the following, we will simply refer to it as high link coverage.
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the latency fluctuations of these flows can be used to detect link
problems at scale. As it only takes one probe to measure each
flow latency once, this end-to-end approach has great potential to
achieve high link coverage withmuch less overhead than traditional
methods (§4.1). Moreover, this approach with active probing can
be used together with passive measurements to reduce overhead
and increase coverage, where probing mainly targets for uncovered
regions.

Figure 1 shows an example of this end-to-end approach, where
all visible links (solid lines) can be covered using either flows 𝐹1,
𝐹2, and 𝐹4 or flows 𝐹1, 𝐹3, and 𝐹4. The later is preferred, because
each end-host is associated with one flow, while the former requires
probing end-host 𝐴 twice as often as end-host 𝐸, causing uneven
burdens across end-hosts. Since each probe in a flow traverses (or
covers) all links along the flow’s path, we say that there exists a
uniform high-coverage realization if each selected end-host
only needs to be probed once to cover most of the visible links.

3 DATASET
We want real-world measurement data for the networks between
major cloud providers and their clients to evaluate the link coverage
issues of current practices (§4) and to shed light on a new approach
to high-coverage link monitoring with reasonable overhead (§5).
To our best knowledge, no publicly available dataset targets full
link coverage and we need to create our own datasets.

3.1 Vantage Points and Targets Selection
We chose DCs from two major cloud providers (Amazon and Al-
ibaba) as VPs and IPv4 addresses in the public Internet as targets.
For wide geographical coverage, we selected one DC in each con-
tinent (Alibaba has no DC in Africa and South America). As it is
common for providers to establish direct peering with different ISPs,
they may reach the same clients through different networks. To
compare between providers, we intentionally chose DCs residing in
the same metropolitan areas (Frankfurt, Silicon Valley and Sydney)
for both providers. In Asia, we chose Alibaba’s and Amazon’s DCs
in Beijing and Tokyo, respectively. In South America and Africa,
we chose Amazon’s DCs in São Paulo and Cape Town, respectively.
As the major traffic volume for DCs is from clients in the same city
or continent [6], we selected for each DC the /8 prefix that covers
the largest amount of addresses in the host country of the DC as
target.

3.2 Measurement Methodology
The major tasks of our datasets are 1) evaluating link coverage
issues of current practices as well as 2) verifying our insight for
IP-level link monitoring. Specifically, our core insight is that as
probes to a target traverse all links along the path to the target, link
issues would be reflected on the end-to-end latency and it is thus
possible to use latency fluctuations as an indicator for potential
link issues. Further, if probing one target can cover all links on
a path, we ask that if it is possible to achieve full link coverage by
carefully selecting the probing targets. Compared to directly probing
each link, this indirect approach has potential to incur much less
overhead.

To accomplish the tasks above, we create three datasets: 1) ground-
truth dataset, which covers all visible links between the selected
vantage points and targets and provides the ground truth for evalu-
ating link coverage issues; 2) random-flow dataset, which can be
used to mimic client traffic for evaluating the issues of using pas-
sive measurements; 3) full-coverage flow dataset, which includes a
set of paths covering all visible links to examine the feasibility of
IP-level link monitoring. It should be noted that the links in 1) and
the paths in 2) and 3) should reflect the same network state for fair
comparison. We discuss in detail how each dataset is collected.
Ground-truth dataset: full link coverage. Due to Internet load
balancing, there could exist many alternative paths between two
hosts. Finding all visible links in between can be done by discovering
all the load-balanced paths. Several measurement tools have been
designed for this purpose, of which D-Miner is the most recent
one capable of enumerating load-balanced paths from a VP to a
given prefix at high speed. We thus choose to use D-Miner for link
discovery. However, as the pool of targets is very large, it may
still take D-Miner days to scan a network of this scale [24]. As
mentioned earlier, we want the links discovered here to reflect the
same network state as the paths to be found later for datasets 2) and
3). This implies that we need to divide the target pool into small
prefixes that can be scanned in minutes by D-Miner to mitigate the
impact of route dynamics.

In our measurement campaigns, we divided targets into /16 pre-
fixes and scanned each /16 sequentially with D-Miner at a probing
rate of 100,000 pps, the same scanning rate used in [24] for Internet-
wide survey. During our campaigns, we scanned each /16 twice in a
row to understand how route changes and packet loss might incur
link difference between two snapshots. We found less than 2% of
link difference between two back-to-back scans to the same /16.
The confidence level of D-Miner to discovering all load-balanced
paths is set to 0.95. Further improving the confidence level to 0.99
only discovered about a few percent more links at the cost of tens
of percent more probes.
Random flow dataset: mimicking client traffic. An Internet
flow is identified by its flow ID, <src port, dst port, src addr, dst addr,
proto id>, which determines how it will be routed in the Internet.
To evaluate the link coverage issues of using passive measurements,
we want to mimic client flows with active probing. Specifically, we
sent a train of probes with increasing TTLs from the VP to each
address, with all probes sharing the same source and destination
ports, to discover all visible links in between. The source port was
set to 80 and the destination port was randomized between 49152
and 65535, the range for ephemeral ports. For each /16, this process
follows immediately after D-Miner finishes scanning, such that
it measures the same Internet state as D-Miner did. To speed up
this process, we modified ZMap, a stateless prober, to support path
discovery to a given address and scan each address in the targeted
/16. For stateless operations, the IPID field in the IP header is used
to encode the original TTLs of probes, which will later be extracted
from the responses. ZMap probed at the same rate as D-Miner for
fast scanning and used UDP probes to simulate the downstream
traffic flows from DCs to clients.
Full-coverage flow dataset: full link coverage by flows.We are
interested to know if it is possible to cover most of the visible links
by carefully selecting client flows, i.e., if a uniform high-coverage
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Figure 2: Coverage issues of current practices for scalable Internet measurement

realization exists between a DC and its clients. To this end, we
need to identify a set of flows whose paths cover all visible links
discovered by D-Miner. Fortunately, D-Miner accomplishes link
discovery by controlling the flow IDs. Simply by using the same set
of flow IDs used to discover links, we can discover and collect the
paths for a set of flows with full link coverage. We modified ZMap
to support path discovery with given source and destination ports
and used it to complete this process.

4 COVERAGE & PREDICTABILITY ISSUES
This section presents the coverage issues of current practices for
scalable Internet measurement and the predictability issues of flow
performance for coverage expansion.

4.1 Coverage Issues of Current Practices
The rule-of-thumb practice for both active and passive Internet mea-
surement is to consider each /24 as a whole and use one end-host
as the representative [16, 17]. Active probing techniques commonly
target the .1 addresses in /24s for a higher response rate [10, 22],
while passive monitoring selects a random client visiting the site
as the representative for its /24 [6]. We want to evaluate the link
coverage issues of these two popular practices using our random
flow dataset, which is collected to include a random path from the
selected VPs to each address in the targeted networks. Specifically,
we collate links along the paths to the selected addresses and calcu-
late the link coverage, i.e., the percentage of the covered links over
all visible links, for the two practices.

Coverage difference between current practices. Recall that
we probed from each DC to a /8 prefix in our measurement survey.
To study the link coverage under different network sizes, we split
the /8 into smaller prefixes of different sizes. Figure 2(a) shows
the link coverage difference between the two practices for both
Amazon’s and Alibaba’s DCs, where the link coverage is averaged
over all equal-sized prefixes under their respective /8s. It can be seen
that there is only a few percent difference in coverage between the
two practices. In the following, we simply assume that .1 addresses
are used as the representatives.

Low link coverage. Figure 2(b) shows the link coverage from
each DC to their respective /8s, where DCs have a wide range of
link counts, depending on the link density, hop count and response
rate. Except for Amazon Cape Town’s DC, all other DCs have link
coverage ranging from 0.15 to 0.25, which do not change much with
the link count. This means that current practices only cover about
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Figure 3: Path difference between similar flows

one-fifth of all visible links, leaving a majority of links unwatched.
Any network events happening to these links will not be observed
by current practices, and no precautions for future client flows can
be taken. To understand the impact of cloud private networks, we
re-calculate coverage for links in public networks. The link coverage
almost remains the same, which means that private networks are
not the culprit for low link coverage.

Trading off scalability for link coverage. The traditional
wisdom to boost link coverage is to increase the granularity of mon-
itoring. We re-do our experiments with prefixes smaller than /24s.
Figure 2(c) shows the tradeoff between link coverage and prefix size,
where the link coverage increases linearly to 100% when the prefix
size decreases to /32, i.e., all addresses are used for monitoring. It is
apparent that using traditional wisdom to improve link coverage
is not scalable, where exponential increment in monitoring scale
only leads to linear increment in coverage.

Impacting factors for link coverage. Link coverage is the
proportion of covered links among all links. Both the covered and
total links increase with the network size, but at different rates
depending on the network topology. Figure 2(d) shows the link
coverage for Alibaba Beijing’s DC, where the link coverage first
increases and decreases afterwards. This is a typical example show-
ing how skewed distribution of link density in the network affects
link coverage.

4.2 Predictability Issues for Similar Flows
The basic assumption behind current practices is that clients in
the same /24 are similar. It is sufficient to monitor only the repre-
sentative to predict the performance of the rest. To verify this
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Figure 4: Links scale much slower than network size

assumption, we calculate the path difference between flows to
the same /24s. Denote the sets of links for flows 𝐴 and 𝐵 as 𝑠𝐴
and 𝑠𝐵 . The path difference between flows 𝐴 and 𝐵 is defined as
( |𝑠𝐴 ∪ 𝑠𝐵 | − |𝑠𝐴 ∩ 𝑠𝐵 |)/(|𝑠𝐴 | + |𝑠𝐵 |). It is unlikely for flows with
significant path difference to perform similarly. We compute the
path difference between two flows respectively to address 𝑥 and
𝑥 + 𝑑 , where 𝑥 is the .0 address in a /24 and 1 ≤ 𝑑 ≤ 255 is the
distance between addresses. Figure 3 shows the distribution of path
difference between flows to the same /24s under different 𝑑’s. For
both Amazon’s and Alibaba’s DCs, the path difference is significant
and prevalent: 80% of flow pairs have a path difference more than
70%.

5 HIGH-COVERAGE LINK MONITORING
We propose to achieve high-coverage link monitoring with an end-
to-end approach that covers most of the links by a set of carefully
selected flows to end-hosts. The overhead of this approach depends
on the number of flows to be monitored and can be expressed as

𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 ∝ 𝑡𝑜𝑡𝑎𝑙_𝑙𝑖𝑛𝑘𝑠 × 1
𝑎𝑣𝑔_𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑖𝑛𝑘𝑠_𝑝𝑒𝑟_𝑓 𝑙𝑜𝑤

,

where the 𝑎𝑣𝑔_𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑖𝑛𝑘𝑠_𝑝𝑒𝑟_𝑓 𝑙𝑜𝑤 means the average number
of unique links covered by each flow, equal to the total number of
unique links divided by the number of flows. To understand the
overhead, we first look at how links scale with network size.

5.1 How Do Links Scale with Network Size?
We create networks of different sizes by dividing the targeted /8s
into smaller prefixes. Recall that our dataset includes full coverage
of visible links from VPs to each /16 of their respective /8s. We can
thus collate links for each prefix and calculate the average number
of links over all equal-sized prefixes. Figure 4 shows the normalized
link count under different network sizes, where the link count is
normalized respectively by the number of /24s under each network
size. For /16s, the normalized link count is large in Asia for both
Amazon’s and Alibaba’s DCs, because there could exist thousands
of links between a VP and a /16, greatly elevating the average
normalized link count. The impact of these links is amortized as
network size increases. For /8s, the average normalized link counts
are below 10 for all continents. Africa and South America even have
links at a similar scale as /24s, which may further decrease for larger
networks. This implies that if the 𝑎𝑣𝑔_𝑢𝑛𝑖𝑞𝑢𝑒_𝑙𝑖𝑛𝑘𝑠_𝑝𝑒𝑟_𝑓 𝑙𝑜𝑤 is

Table 1: Link Coverage for Uniform High-Coverage Realiza-
tions

Prefix Size
/16 /14 /12 /10 /8

Amazon 97.1% 94.6% 89.6% 84.0% 83.1%
Alibaba 95.0% 93.2% 87.2% 86.1% 87.5%
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Figure 5: End-to-end approach to high link coverage

large, the end-to-end approach can achieve full link coverage with
reasonable overhead.

5.2 Uniform High-Coverage Realization
Since each probe covers all links along the flow’s path, we say that
a uniform high-coverage realization exists if most of the visible
links can be covered by probing each selected flow once. Before
jumping into the solutions to high-coverage monitoring, we first
want to know if uniform high-coverage realizations exist from the
cloud to the public Internet. To this end, we want to initiate a flow
from the VP to each address in the targeted prefix such that the
link coverage can be maximized. This process assembles what D-
Miner does in its first stage of link discovery: generating flows with
varying destination addresses from .1 to .255 in each /24 to discover
load balancing. If D-Miner discovers most of the links in its first
stage, we can achieve high coverage with the same set of flows, i.e.,
a uniform high-coverage realization exists. Table 1 shows the link
coverage for uniform high-coverage realizations, where the average
link coverage for /16s is above 95% for all DCs and is still above 80%
for /8s. This means that uniform high-coverage realizations exist
for both small and large prefixes. After knowing its existence, we
next design a greedy algorithm to achieve uniform high coverage.

5.3 A Greedy End-to-End Approach
The goal of the end-to-end approach is to achieve the required cov-
erage with the least number of flows, or equivalently, to maximize
the average number of unique links covered by each flow. As a first
step, we design a simply greedy algorithm to obtain a rough esti-
mate, which always selects the address to which the flow discovers
the most number of new links. When two addresses contribute
the same number of new links, we randomly select one to proceed.
This process is repeated until all visible links are covered. Figure 5
shows the ratio of the selected flows to the total links. The average
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ratio increases with the network size, because it becomes more
difficult to cover all visible links for larger networks. Nonetheless,
on average, the number of flows needed is 60% of the total links for
/8s.

5.4 Coverage & Overhead Tradeoff
In the greedy algorithm above, since addresses discovering the
highest number of new links are selected first, the efficiency of
adding new flows decreases gradually. As shown in Figure 6, only
the first 30% of overhead can discover more than one new links and
there is a long tail in the distribution. Suppose we are interested
in covering 80% of links, the overhead can be reduced by 62% and
68% for Amazon’s and Alibaba’s DCs, respectively. This further
decreases the overhead obtained from the greedy algorithm. For
80% of link coverage, the number of flows needed is only about
one-third of the total links.

6 RELATEDWORK
For scalable Internet monitoring, past efforts attempt to aggregate
similar clients by their attributes (e.g., geolocation [19] and BGP
prefix [4]), and only monitor the representative [6, 16]. Tracking the
representative can be done either by active probing [1, 5, 20] or by
passive traffic sniffing [11]. Major cloud providers can reduce mea-
surement overhead by leveraging passive measurements collected
from their client traffic [16]. Passive measurements are commonly
used together with active probing for network debugging [14]. Net-
work tomography attempts to infer link-level performance with
partial measurements, but runs into scalability issues for the public
Internet monitoring [12, 25]. None of the methods above considers
IP-level high-coverage Internet monitoring at scale.

7 CONCLUSION AND FUTUREWORK
In this work, we evaluated the issues of current practices in both
coverage and predictability. Our results show that current practices
fail tomonitor the changes of amajority of links in the Internet, leav-
ing critical links unwatched. This motivates IP-level high-coverage
Internet monitoring, aiming to capture critical link events by cover-
ing most of the visible links. To this end, we propose an end-to-end
approach that covers links by carefully selecting probing targets,
with great potential to achieve high-coverage monitoring with
reasonable overhead. There are still many unaddressed issues for

future work, including the temporal variations of link coverage and
the optimal flow selection algorithm.

ACKNOWLEDGMENTS
We appreciate the constructive feedback from the anonymous re-
viewers. This work is partially supported by the Huawei-SJTU
ExploreX Funding (SD6040004/052). The corresponding author is
Yibo Pi (yibo.pi@sjtu.edu.cn).

REFERENCES
[1] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy, C. Mag-

nien, and R. Teixeira. 2006. Avoiding traceroute anomalies with Paris traceroute.
In IMC. 153–158.

[2] B. Augustin, T. Friedman, and R. Teixeira. 2007. Measuring load-balanced paths
in the Internet. In IMC. 149–160.

[3] R. Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzenmacher. 2020.
PINT: Probabilistic in-band network telemetry. In SIGCOMM. 662–680.

[4] M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, and J. Padhye. 2015. Analyzing
the performance of an anycast CDN. In IMC. 531–537.

[5] M. Calder, R. Gao, M. Schroder, R. Stewart, J. Padhye, R. Mahajan, G. Anantha-
narayanan, and E. Katz-Bassett. 2018. Odin: Microsoft’s Scalable Fault-Tolerant
CDN Measurement System. In NSDI. 501–517.

[6] F. Chen, R. K. Sitaraman, andM. Torres. 2015. End-user mapping: Next generation
request routing for content delivery. SIGCOMM CCR 45, 4 (2015), 167–181.

[7] A. Dainotti, C. Squarcella, E. Aben, kc claffy, M. Chiesa, M. Russo, and A. Pescapé.
2011. Analysis of country-wide internet outages caused by censorship. In IMC.
1–18.

[8] A. Dhamdhere, D. D. Clark, A. Gamero-Garrido, M. Luckie, R. KPMok, G. Akiwate,
K. Gogia, V. Bajpai, A. C. Snoeren, and kc claffy. 2018. Inferring persistent
interdomain congestion. In SIGCOMM. 1–15.

[9] A. Dhamdhere and C. Dovrolis. 2011. Twelve years in the evolution of the Internet
ecosystem. IEEE/ACM Transactions on Networking 19, 5 (2011), 1420–1433.

[10] X. Fan and J. Heidemann. 2010. Selecting representative IP addresses for Internet
topology studies. In IMC. 411–423.

[11] S. Gangam, J. Chandrashekar, Í. Cunha, and J. Kurose. 2013. Estimating TCP
latency approximately with passive measurements. In PAM. 83–93.

[12] D. Ghita, C. Karakus, K. Argyraki, and P. Thiran. 2011. Shifting network tomog-
raphy toward a practical goal. In CoNext. 1–12.

[13] C. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Watten-
hofer. 2013. Achieving high utilization with software-driven WAN. In SIGCOMM.
15–26.

[14] Y. Jin, S. Renganathan, G. Ananthanarayanan, V. N. Padmanabhan J. Jiang, M.
Schroder, M. Calder, and A. Krishnamurthy. 2019. Zooming in on wide-area
latencies to a global cloud provider. In SIGCOMM. 104–116.

[15] R. R. Kompella, J. Yates, A. Greenberg, and Alex C. Snoeren. 2009. Fault localiza-
tion via risk modeling. IEEE Transactions on Dependable and Secure Computing 7,
4 (2009), 396–409.

[16] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy, T. Ander-
son, and J. Gao. 2009. Moving beyond end-to-end path information to optimize
CDN performance. In IMC. 190–201.

[17] Y. Lee and N. Spring. 2016. Identifying and aggregating homogeneous ipv4/24
blocks with Hobbit. In IMC. 151–165.

[18] M. Luckie, A. Dhamdhere, D. Clark, B. Huffaker, and kc claffy. 2014. Challenges
in inferring internet interdomain congestion. In IMC. 15–22.

[19] V. N. Padmanabhan and L. Subramanian. 2001. An investigation of geographic
mapping techniques for Internet hosts. In IMC. 173–185.

[20] C. Pelsser, Luca Cittadini, Stefano Vissicchio, and Randy Bush. 2013. From Paris
to Tokyo: On the suitability of ping to measure latency. In IMC. 427–432.

[21] Y. Pi, S. Jamin, P. Danzig, and F. Qian. 2020. Latency imbalance among Internet
load-balanced paths: A cloud-centric view. SIGMETRICS 4, 2 (2020), 1–29.

[22] L. Quan, J. Heidemann, and Y. Pradkin. 2013. Trinocular: Understanding internet
reliability through adaptive probing. SIGCOMM CCR 43, 4 (2013), 255–266.

[23] A. Schulman and N. Spring. 2011. Pingin’in the rain. In SIGCOMM. 19–28.
[24] K. Vermeulen, J. P. Rohrer, O. Fourmaux R. Beverly, and T. Friedman. 2020.

Diamond-Miner: Comprehensive Discovery of the Internet’s Topology Diamonds.
In NSDI. 479–493.

[25] L. Xue, M.K. Marina, G. Li, and K. Zheng. 2022. PAINT: Path Aware Iterative
Network Tomography for Link Metric Inference. In ICNP. 1–12.

[26] Y. Zhao, K. Yang, Z. Liu, T. Yang, L. Chen, S. Liu, N. Zheng, R. Wang, H. Wu, Y.
Wang, and N. Zhang. 2021. LightGuardian: A Full-Visibility, Lightweight, In-band
Telemetry System Using Sketchlets. In NSDI. 991–1010.


	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Load Balancing Worsens Coverage
	2.2 Load Balancing Weakens Predictability
	2.3 High-Coverage Internet Monitoring

	3 Dataset
	3.1 Vantage Points and Targets Selection
	3.2 Measurement Methodology

	4 Coverage & Predictability Issues
	4.1 Coverage Issues of Current Practices
	4.2 Predictability Issues for Similar Flows

	5 High-Coverage Link Monitoring
	5.1 How Do Links Scale with Network Size?
	5.2 Uniform High-Coverage Realization
	5.3 A Greedy End-to-End Approach
	5.4 Coverage & Overhead Tradeoff

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

