
2748 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018

AP-Atoms: A High-Accuracy Data-Driven Client
Aggregation for Global Load Balancing

Yibo Pi , Sugih Jamin , Peter Danzig, and Jacob Shaha

Abstract— In Internet mapping, IP address space is divided
into a set of client aggregation units, which are the finest-grained
units for global load balancing. Choosing the proper level
of aggregation is a complex problem, which determines the
number of aggregation units that a mapping system has to
maintain and client redirection. In this paper, using Internet-wide
measurements provided by a commercial global load balancing
service provider, we show that even for the best existing client
aggregation, almost 17% of clients have latency more than 50 ms
apart from the average latency of clients in the same aggregation
unit. To address this, we propose a data-driven client aggregation,
AP-atoms, which can trade off scalability for accuracy and adapt
for changing network conditions. Since AP-atoms are obtained
from the passive measurements of existing traffic between server
providers and clients, no extra measurement overheads are
incurred. Our experiments show that by using the same scale of
client aggregations, AP-atoms can reduce the number of widely
dispersed clients by almost 2× and the 98th percentile difference
in clients’ latencies by almost 100 ms.

Index Terms— Client aggregation, global load balancing,
data-driven, scalability and accuracy.

I. INTRODUCTION

DNS-BASED client redirection has been adopted by many
CDN provides like Google [26] and Akamai [11]. Since

the local DNS nameserver (LDNS) of a client is typically
co-located with the client, LDNSs are used as a proxy for
nearby clients. To make redirection decisions for billions
of clients, a mapping system only needs to measure the
performance from servers to hundreds of thousands of LDNSs.
However, a recent study on Akamai’s CDN found that LDNSs
are not a good proxy for nearly 20% of client demand,
where clients use either public resolvers or LDNSs remote
to the clients [12]. To better map these clients to the clos-
est servers, Akamai rolled out the next-generation mapping
system, i.e., end-user mapping, which locates clients in the
Internet using the /24 subnets of the clients rather than
their DNS resolvers. End-user mapping is made possible by
the recent extension to the DNS protocol (EDNS), allowing
recursive nameservers to carry the subnet of clients in their

Manuscript received February 25, 2018; revised May 19, 2018 and
August 21, 2018; accepted October 4, 2018; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor P. P. C. Lee. Date of publication
November 9, 2018; date of current version December 14, 2018. (Correspond-
ing author: Yibo Pi.)

Y. Pi and S. Jamin are with the Department of Computer Science and
Engineering, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
yibo@umich.edu; sugih@umich.edu).

P. Danzig is with Panier Analytics, Menlo Park, CA 94025 USA.
J. Shaha is with the United States Military Academy, West Point, NY 10996

USA.
Digital Object Identifier 10.1109/TNET.2018.2878019

DNS queries [6]. To take advantage of EDNS for global
load balancing, the mapping system has to estimate the path
performance from servers to millions of subnets on the Inter-
net. To maintain up-to-date path performance estimation for
millions of subnets is not scalable.

Choosing the proper aggregation of clients is to find a
good tradeoff between scalability and accuracy. Using /24 IP
blocks as client aggregations may be accurate in redirection,
but not scalable in terms of performance estimation. In con-
trast, aggregating clients by their LDNSs is scalable, but
not accurate for remote clients. IP blocks with /20 network
prefix have been proposed to be a good tradeoff between
scalability and accuracy [12]. Clients can also be aggregated
by their geographic locations [29] and BGP routing paths [22].
In this paper, we use Internet-wide measurements provided by
a commercial global load balancing service provider to study
the performance of existing client aggregations.

We find that even for the best existing aggregation, almost
17% of clients have latency 50 ms apart from other clients.
By studying the causes for widely dispersed clients, we find
that the wide dispersal of client latencies in existing aggre-
gations are caused by aggregating clients based on attributes
other than path performance. To address this, we propose
AP-atoms. AP-atoms are data-driven and group clients based
directly on their path performance (e.g., latency) to servers.1

Since the path performance between clients and servers can
be passively measured from user traffic available to service
providers [14], AP-atoms can be obtained without incurring
extra measurement overheads. To obtain AP-atoms, we use
machine learning algorithms to identify distinct latency pat-
terns and cluster clients based on these patterns. Besides the
next-generation mapping system, AP-atoms also have potential
uses in other emerging applications, e.g., consumer cloud
storage [15], that could benefit from the scalable and accurate
estimation of path performance between clients and servers.

Our contributions are summarized as follows:
• To the best of our knowledge, we are the first to conduct

a comparative study of the performance of existing client
aggregation methods.

• We propose a data-driven aggregation method that can
flexibly trade off scalablity for accuracy. The method
relies on the passive measurements of existing traffic
between service providers and clients and thus incurs no
extra measurement overheads. The data-driven property

1In the literature, performance measurements are commonly used to estimate
performance between servers and pre-determined client aggregations for better
load balancing [9], [26], but not used to obtain client aggregations.

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2021 at 04:54:13 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1287-3311
https://orcid.org/0000-0002-6460-3404

PI et al.: AP-ATOMS: HIGH-ACCURACY DATA-DRIVEN CLIENT AGGREGATION FOR GLOBAL LOAD BALANCING 2749

enables our mechanism to dynamically adapt to changing
network conditions.

• We propose to use the modes of round-trip times (RTTs)
as latency and use machine learning algorithms to identify
different latency patterns of clients.

II. EXISTING CLIENT AGGREGATIONS

To motivate this study, we first compare the performance
of existing client aggregations. To our best knowledge,
these existing aggregation methods have been studied sepa-
rately [12], [20], [24], [29], but there has been no comparative
study of the four methods. We use Internet-wide measurements
from a commercial global load balancing service provider
for the comparative study. Our dataset includes 30 days of
measurements. Each day’s data contains about 1.5 billion mea-
surement records, occupying approximately 550 GB. Clients in
our dataset cover 86% of countries in the world and are from
4.2 million /24s. Path latencies are measured between these
clients and 160 sites of CDN and cloud service providers,
including Akamai, Amazon, Google, Level3 and Microsoft
Azure, and others. Our dataset only includes measurements
on network performance (e.g., RTT and throughput) and does
not contain any sensitive information about clients (e.g., traffic
content and passwords). Further, individual addresses (32-bit
addresses) are anonymized with the last byte of addresses
masked for privacy. In other words, addresses in our dataset
are represented as /24 IP blocks. More details on our dataset
are presented in Appendix A.

The general principle in client aggregation is to pool
together clients that are similar. Existing aggregations define
client similarity mainly based on one of four attributes:
(1) geographic locations, (2) fix-sized prefixes, (3) BGP rout-
ing paths, or (4) LDNSs. Using the first attribute, clients
within a given geographic radius are gathered together
into geo-blocks [29]. Aggregation by the second attribute
simply groups clients by the first k bits of their IP
addresses. Researchers studying Akamai’s end-user mapping
suggested /20 prefixes as a good tradeoff between scalability
and accuracy [12]. Aggregation by the third attribute exploits
shared BGP routing paths amongst clients. Since clients within
the same routable prefix share a portion of their BGP paths,
it is reasonable to aggregate clients into routable BGP prefixes.
Aggregation by the fourth attribute is commonly used by
CDNs, where clients using the same LDNS are aggregated
into the same aggregation unit [12], [26].

Using our dataset, we simulate the use of aggregation
methods above in real systems. In Internet routing, routers
choose next hops using the longest prefix match. Packets sent
from a server to a client are routed to the prefix that shares the
longest common bits with the client’s IP address. The latency
along the routes is the latency between the server and the
client. We thus use the latency measurements between clients
and servers in our dataset to simulate the latency along the
routes in Internet routing. To compare the performance of the
four client aggregation methods, we present a metric referred
to as latency dispersion, which measures the differences in
latency between clients in the same aggregation unit. We study
the performance of existing client aggregations in terms of
latency. The same concept of dispersion applies to other
performance metrics such as bandwidth and packet loss.

Fig. 1. Illustration of latency dispersion. (a) Latency dispersion of clients.
(b) Impact of dispersion.

A. Latency Dispersion

As shown in Figure 1(a), an aggregation unit is an aggre-
gation of clients. Given a server, we can have two types of
latencies: 1) the latency from each client in the aggregation
unit to the server and 2) the latency from the aggregation unit
as a whole to the server.2 For scalable management of the
Internet, client redirections are determined by the latencies
of aggregation units to servers [12], [26]. To understand
the effects of using latency of aggregation units to perform
redirection for all clients inside the unit, we define two metrics
for both clients and aggregation units as follows.

The dispersion of a client to a server is the difference
between the latency of the client to the server and the centroid
of the aggregation unit to the server, where the centroid is the
average latency of clients in the aggregation unit. The disper-
sion of clients tells us how many clients are far away from
other clients in the same aggregation unit in terms of latency.
The dispersion of an aggregation unit to a server is the largest
dispersion among all clients in the aggregation unit, which tells
us the worst performance of existing aggregation units. We use
the largest dispersion instead of a percentile-based one because
the sizes of aggregation units range from a few to thousands
of clients and the percentile-based dispersion is biased against
small ones, where each client takes a significant portion of its
aggregation unit.3 More importantly, using largest dispersion
gives us a worst-case performance for aggregation units.
We use largest dispersion only in comparing the performance
of aggregation methods, not part of aggregation methodology.

Figure 1(b) shows an example on the impact of dispersion
on server selection. Based on latencies, server 1 is a better
choice than server 2 for the aggregation unit. However, since
the dispersion of the aggregation unit to server 1 is 100 ms,
directing all clients in the unit to server 1 will cause some
clients to experience 50 ms larger latency than if they had
been redirected to server 2. We want to use latency dispersion
as a metric to indicate the quality of aggregation units. Small
latency dispersion enables an accurate estimation of latency to
aggregation units and thus an accurate server redirection. Since
clients in an aggregation unit could be redirected to mutliple
servers, we prefer that the dispersion of the aggregation unit to
all possible servers be small. Although latency dispersion may

2In [26], one client in the aggregation unit is selected randomly and its
latency is considered as representative of the unit.

3For large aggregation units, we could have a small portion of clients far
away from others, but we do not consider them as outliers, in contrast,
representatives of a small group of clients that are aggregated improperly.
The reasons for this are that 1) the clients we can use to calculate dispersion
for large aggregation units only takes a small portion of all clients in the
units, which implies that the actual dispersion could be larger, and that 2) the
latencies of clients are accurately identified as shown in Section IV-C.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2021 at 04:54:13 UTC from IEEE Xplore. Restrictions apply.

2750 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018

Fig. 2. Latency dispersion to a single server.

give us false positive results4 in some cases, these cases cover
at most 0.8% of clients for all aggregation methods. In the
following, we first show the latency dispersion of existing
client aggregations to a single server and the maximum latency
dispersion to all servers.

1) Latency Dispersion to a Single Server: We use the
database of routable BGP prefixes from CAIDA [4] for
aggregation by BGP routing paths and the IP-to-location
database from IP2Location [17] for aggregation by geographic
locations. We use /20 IP blocks for fix-sized prefixes and
aggregate clients by their LDNSs. Addresses in the IP-to-
location database are represented as IP blocks and each IP
block has an estimated location. For comparison with other
aggregations, we aggregate IP blocks into geo-blocks that have
a distribution of prefix size similar to BGP prefixes, where IP
blocks in the same geo-block have locations in a circle with a
radius less than 200 miles. We compare the latency dispersion
of the four aggregation methods above on two granularities:
aggregation units and clients. Since the last byte of addresses
in our dataset is anonymized for privacy reasons, each client in
our dataset is a /24 IP block, which is actually an aggregation
of individual addresses (32-bit).

To calculate latency dispersion, we use the latency mea-
surements from all clients to one server.5 Among all clients,
we have obtained 1.7 million clients that have stable laten-
cies (i.e., the single-mode latency in Figure 5(a)) to the
server. For comparison among aggregation methods, we group
these clients to aggregation units for each aggregation method
respectively. For LDNS, clients using the same LDNS are in
the same aggregation unit. For BGP prefixes, /20 IP blocks
and geo-blocks that are represented as prefixes, we use the
longest prefix match to group clients. Each client is mapped
to the aggregation unit having the longest common prefix
with the client’s address. Then, we calculate the disper-
sion of clients and aggregation units. Figure 2(a) shows the
cumulative distribution function (CDF) of latency dispersion
of aggregation units to the server. BGP prefixes in general
have smaller dispersion than other aggregations, but still have
a significant percentage (about 14%) of aggregation units
with dispersion larger than 50 ms. Following the study of
Google’s CDN [26], we use 50 ms as a threshold to indicate
a significant difference in latency. Looking at the distribution
of latency dispersion of clients in Figure 2(b), /20 IP blocks

4False positive results occur when clients in an aggregation unit use the
same gateway (not middleboxes, see Section III-C1) to the rest of the Internet
and have different path performance. Such clients would have large dispersion
(larger than 50 ms) to all servers.

5Using latency measurements to other servers gives us similar results, not
presented here. We do not average latency dispersion of clients over servers
because each client has communications with a different set of servers.

Fig. 3. Maximum latency dispersion to multiple servers.

have smaller dispersion than other aggregations. About 6% of
clients in /20 IP blocks have dispersion larger than 50 ms.
Moreover, the distribution of dispersion of clients has a long
tail, where the 99-th percentile dispersion is about 150 ms for
all aggregations. In Figure 2(a), BGP prefixes and geo-blocks
include a portion of aggregation units with zero dispersion.
This is due to half of aggregation units from BGP prefixes
and geo-blocks being of size /24, comprising of only one client
each.

2) Latency Dispersion to Multiple Servers: In global load
balancing, since clients of an aggregation unit could be
directed to one of a set of candidate servers [3], the worst-case
performance of clients is determined by the server to which
the aggregation unit has the maximum dispersion among all
candidate servers. Thus, we want to know the maximum
dispersion of aggregation units and of clients to multiple
servers. To calculate the maximum dispersion, we use latencies
from clients to all 10 servers. Among all clients, we have
obtained 2.3 million clients having stable latencies to at least
one server. The dispersion of clients to each server is first
calculated. If a client has no measured latency to a server, the
dispersion of the client to the server is considered undeter-
mined. Each client then will have dispersions calculated for
up to 10 servers. Among these dispersions, the maximum one
is used as the maximum dispersion of clients. Recall how we
obtained the dispersion of aggregation units to each server
from the dispersion of clients. Similarly, we can obtain the
maximum dispersion of aggregation units. Figure 3(a) shows
the distribution of the maximum dispersion of aggregation
units to the 10 servers. BGP prefixes and geo-blocks have
smaller dispersion than /20 IP blocks and LDNS,6 but almost
26% of BGP prefixes and geo-blocks have dispersion larger
than 50 ms to at least one server. Figure 3(b)shows that about
17% of clients in /20 IP blocks and geo-blocks have dispersion
larger than 50 ms to at least one server.

Comparing Figures 3(a) and 3(b), we can see that even
though BGP prefixes and /20 IP blocks have similar latency
dispersion of clients, BGP prefixes have 20% more aggre-
gation units with dispersion less than 50 ms than /20 IP
blocks do. This is because BGP prefixes and geo-blocks
have 40% of aggregation units with zero dispersion, where
98% of these aggregation units are /24s. However, compared
to /20 IP blocks, BGP prefixes and geo-blocks both have
very large aggregation units, which could easily have large
dispersion if clients included are not similar. Indeed, among
the aggregation units with dispersion larger than 250 ms in
BGP prefixes, 73% are of size at least /19 while only 7%

6Since geo-blocks and BGP prefixes are similar in the distribution of prefix
sizes, they are close in dispersion in Figure 2 and 3.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2021 at 04:54:13 UTC from IEEE Xplore. Restrictions apply.

PI et al.: AP-ATOMS: HIGH-ACCURACY DATA-DRIVEN CLIENT AGGREGATION FOR GLOBAL LOAD BALANCING 2751

Fig. 4. Distribution of the pruned ratio.

are of size /22 or smaller. Similarly, among aggregation units
with dispersion larger than 250 ms in geo-blocks, 80% are of
size at least /19 and only 4% are of size /22 or smaller. As the
numbers show, aggregating clients by attributes could result in
widely dispersed clients, regardless of aggregation unit sizes.

B. Causes for Large Dispersion

An aggregation unit has large dispersion when a small por-
tion of clients (minorities) have latencies significantly different
from other clients in the same aggregation unit,7 or when the
aggregation unit is overlarge and includes clients that should
be divided into smaller aggreagation units (over-aggregation).

1) Identifying Minorities and Over-Aggregation: To study
the two causes, we look at the aggregation units with dis-
persion larger than 50 ms and determine the minimum set
of clients that must be pruned to obtain dispersion less than
50 ms. We use a greedy algorithm to minimize the number of
clients in the pruned set. The greedy algorithm starts from all
the clients in the aggregation unit and first prunes the client
that has latency furthest from the average latency of clients.
Then, the process is repeated with the rest of the clients until
the dispersion of the aggregation unit is less than 50 ms. Then,
we calculate the ratio of the number of clients in the pruned
set to the total number of clients (pruned ratio).

Figure 4 shows the distribution of pruned ratios for the
four aggregation methods. We consider an aggregation unit
as containing minorities if they have a pruned ratio 0.1 or
less. Since a /20 IP block includes at most 16 /24 clients,
almost no /20 IP blocks have a pruned ratio less than 0.1.
Of the other aggregation methods, only 25% to 31% of their
aggregation units have a pruned ratio less than 0.1. Since small
aggregation units include a fewer number of clients, they are
less likely to have a small pruned ratio. Among aggregation
units with a pruned ratio less than 0.1, over 84% of them
are of size at least /18 for BGP prefixes and geo-blocks. If we
now consider aggregation units with a pruned ratio larger than
0.2 to be due to over-aggregation, over 40% of aggregation
units have large dispersion due to over-aggregation for all
aggregatiom methods. Since each client takes a significant
portion in small aggregation units, small aggregation units
with large dispersion are more likely due to over-aggregation.
Among aggregation units of size /18 or larger, 10% of geo-
blocks, 9% of BGP prefixes and 4% of aggregations by LDNSs
with large dispersion are due to over-aggregation.

2) Inflexibility of Existing Aggregations: Existing aggrega-
tion methods partition Internet address space by clustering

7We have verified that atypical latencies are not the reason to large
dispersion. Among aggregation units with large dispersion, less than 2% of
them include minorities that could experience atypical latencies (20 ms larger
than latencies in neighboring periods) such as caused by network congestion.

clients similar in certain attributes. The attributes do not
necessarily reflect path performance of clients. Moreover,
given an attribute by which clients are aggregated, partitioning
of the address space is fixed, not adaptive to changing network
conditions. This inflexibility of partitioning causes the minori-
ties and over-aggregation problems. In this section, we analyze
the relationship between inflexible address space partitioning
due to the use of arbitrary, non-performance related attributes
and the presence of minorities and over-aggregation.

Minorities and over-aggregation are due to clients’ having
large distances in their latencies (latency distance). We now
study how latency distance relates to the distance in IP
addresses (address distance), i.e., how clients far away in
latency can be separated by splitting address space. We use
the same definition of address distance used by Lee and
Spring [31]. For each client in the pruned set, we choose the
top 10% furthest clients in latency and refer to them as distant
clients. Then, we calculate two address distances: 1) from the
client in the pruned set to the distant clients and 2) between
distant clients. For the first measure, we calculate the address
distance between the client and each of the distant clients,
and use the average as the address distance. For the second
measure, we calculate the address distance between each pair
of the distant clients and use the average as the address
distance.

For existing aggregation methods, we find that about
37% to 47% of minorities are closer to the distant clients in
address space than the distant clients are among themselves.
Thus to separate them from the distant clients would require
segregating them into their own, small aggregation units,
e.g., /23s. For the remaining 53% to 63% of minorities, since
they are further apart from the distant clients than the distant
clients are apart amongst themselves, we could further divide
the address space. In the case of over-aggregation, only 7%
of clients are closer to the distant clients than the distant
clients are apart amongst themselves, in address space. This
means that for most clients in the case of over-aggregation,
being far apart in latency to distant clients implies being
far apart in address space. Thus, these clients should be
easily separated from the distant clients by further dividing
the address space. In the following, we introduce AP-atoms
which takes advantage of the above observations and allow
for flexible address space boundaries that adapt dynamically
to network condition.

III. AP-ATOMS

In contrast to existing aggregation methods, AP-atoms are
data-driven aggregation. It aggregates clients based on their
latencies. Each AP-atom includes clients with similar laten-
cies. The similarity in latencies, which determines the disper-
sion of clients, can be controlled depending on the require-
ments on the accuracy of client redirection. Since AP-atoms
aggregate clients based on their latencies and the latencies
of clients change with network events, e.g., route changes,
AP-atoms dynamically adapt to changing network conditions,
resulting in high-accuracy aggregation. Futher, AP-atoms are
server-independent: the dispersion of aggregation units and
of clients is small whichever server they are redirected to.
To achieve server-independence, we find a set of aggregation
units that have small dispersion from the view of each single

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2021 at 04:54:13 UTC from IEEE Xplore. Restrictions apply.

2752 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018

Fig. 5. Four patterns of latencies. (a) Single mode. (b) Non-overlapping
modes. (c) Overlapping modes. (d) No mode.

server, referred to as AP-atom candidates. Then, we merge
the view of each server (i.e., AP-atom candidates) to obtain
AP-atoms.

A. AP-Atom Candidates: Single-Server View

AP-atom candidates are generated from clusters of clients
with similar patterns in their latency measurements. Before
discussing how to cluster clients based on their latency pat-
terns, we first present latency patterns and the idenfication of
latency patterns. We start with the latencies between a server
and its clients, which can be obtained, for example, from the
TCP round-trip time estimates of the clients’ connections at
the server. Client latencies, observed over time, change with
network events and thus have different patterns.

1) Latency Patterns: Before introducing patterns in latency
measurements, we first discuss how to determine latency.
When an individual address (a 32-bit IP address) has a large
number of RTTs available [13], [26], the minimum or median
RTT is generally used as latency. However, when this method
is used for passive measurements, it faces two problems:
1) a significant portion of individual addresses could have
an insufficient number of measurements in passive measure-
ments,8 and 2) the measurements of individual addresses could
be inflated due to network congestions, not representative for
typical latencies. To solve these problems, we aggregate RTTs
and use the collective behaviors in the aggregated RTTs to
determine latency. As the finest address prefix granularity in
our dataset is /24 for privacy purposes, we aggregate individual
addresses in the same /24 IP block. As recent work has
shown, it is possible for /24 IP blocks to include individual
addresses that are dissimilar in latencies [21]. We use the
modes of RTTs as latency, where the modes of RTTs are the
prevalent RTTs (see Section III-A2 for more details). Since
RTTs can have multiple modes, using modes instead of the
minimum or median latency helps us distinguish dissimilar
addresses within the same /24 IP block.

Figure 5 shows four patterns of RTTs taken from a client
(i.e., a /24 IP block). When individual addresses in the

8An individual address could easily have sparse data in passive mea-
surements due to 1) the individual address may have infrequent or no
communications with the servers of interest and 2) latency can be measured
passively only at limited stages of communications, e.g., during TCP’s
three-way handshake [14].

Fig. 6. An example of applying MSC to obtain MSC clusters. (a) RTT
samples. (b) MSC clusters.

same /24 block are similar in latencies, their combined RTTs
either have a single mode as in Figure 5(a) or mutliple modes
that do not overlap in time as in Figure 5(b). A single
mode occurs when RTTs are measured in a stable period
of the network, where the network could be either uncon-
gested or persistently congested. Multiple non-overlapping
modes occur when RTTs are measured in a period including
network condition changes, e.g., congestion or route changes.
As individual addresses are similar in latency, their RTTs
change with the changing network conditions, resulting in
non-overlapping multiple modes. Figure 5(c) shows a pattern
including multiple modes that overlap in time, which we
refer to as overlapping modes. Due to insufficient or noisy
measurements, the modes of RTTs could be unidentifiable,
referred to as unidentifiable modes. Figure 5(d) shows an
example of noisy RTTs, where RTTs take a large range of
values and thus no mode can be identified.

2) Identifying Latency Patterns: We identify latency pat-
terns using two machine learning algorithms, i.e., mean
shift clustering (MSC) [10] and total variation denosing
(TVD) [18]. MSC is used to cluster RTT samples, where
samples in the same cluster (called MSC cluster) are close in
values. TVD is used to determine the relations between MSC
clusters. In Figure 6(a), we use an example to show how to
obtain MSC clusters and the relations between MSC clusters.
The example shows one-day RTT trace from a /24 block to a
given server. At time 6, an erroneous sample, much less than
other samples, is marked as a cross. Before and after time 12,
there is a change of the minimum RTTs, which could be due
to a network event. After applying MSC on the RTT samples,
we obtain the MSC clusters in Figure 6(b). The erroneous
sample is isolated in MSC cluster 1. Each MSC cluster has a
peak and the RTT corresponding to the peak is the mode of
the cluster. MSC clusters 2, 3 and 5 have a much higher peak
than other clusters, indicating that they include a much larger
number of samples.

To distinguish between MSC clusters (denoted as x and y),
we identify three relations: 1) x is noise to y, i.e., x has a
much less number of RTTs than y, and RTTs in x and y are
interleaved in time, e.g., MSC clusters 1 and 5; 2) x and y
are non-overlapping, i.e., x and y are not noise to any
other clusters and their RTTs almost do not overlap in time,
e.g., MSC clusters 2 and 3; 3) x and y are overlapping,
i.e., x and y are not noise to any other clusters and their RTTs
are interleaved in time, e.g., MSC clusters 2 and 5. Only the
modes of MSC clusters that are not noise to any other clusters
are considered stable and used to calculate latency dispersion
in experiments. In the following, we use TVD to quantitatively
determine the relations between MSC clusters.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2021 at 04:54:13 UTC from IEEE Xplore. Restrictions apply.

PI et al.: AP-ATOMS: HIGH-ACCURACY DATA-DRIVEN CLIENT AGGREGATION FOR GLOBAL LOAD BALANCING 2753

The most well-known application of TVD is noise removal.
Given a noisy signal as input, TVD recovers the original
signal by smoothing out the noise. If the noisy signal is
denoted as r = (r1, . . . , rm), where ri is the i-th element,
the objective of TVD is to find a sequence z = (z1, . . . , zm),
an approximation to the original signal by minimizing the
following cost function,

argmin
z

m∑

i=1

|ri − zi|2 + λ

m∑

i=2

|zi − zi−1| ,

where λ is a tuning parameter penalizing the change to zi.
Given two MSC clusters x and y, we first set all RTTs in each
MSC cluster to be the mode of that cluster and then merge
the RTTs in both clusters in the order of their measured time.
Using the merged RTTs as input r to TVD, we obtain the
output z as previously described. Setting all RTTs in each
cluster to the same value before applying TVD emphasizes
the impact of one cluster on the other. If ri is in x, |zi − ri| is
then the impact of RTTs in y on ri after TVD. Let us denote
the change of ri, i.e., |zi − ri|, as Δi and use a threshold
Δth to determine if the change is significant.

After TVD, we calculate the percentages of RTTs hav-
ing significant changes in x and y, denoted as Px and Py

respectively. Let h be a threshold to determine if most RTTs
have significant changes. The relations between x and y are
summarized as follows: 1) If Px ≤ 1 − h and Py ≥ h,
most RTTs in y have significant changes, while most RTTs
in x do not have significant changes, i.e., y is noise to x.
Similarly, if Py ≤ 1 − h and Px ≥ h, x is noise to y;
2) If Px ≤ 1 − h and Py ≤ 1 − h, RTTs in x and y have
small impact on each other, i.e., x and y are non-overlapping;
3) Otherwise, overlapping. It should be noted that x and y in
the last two relations cannot be noise to any other clusters.
Using the pairwise relations between MSC clusters, we can
identify latency patterns as follows. If two MSC clusters
are overlapping, the latency pattern has overlapping modes.
If two MSC clusters are non-overlapping and other clusters
are noise to the non-overlapping clusters, the latency pattern
has non-overlapping modes. If all other clusters are noise to
one cluster, the latency pattern has a single mode.

In the algorithms above, we have three parameters λ,
Δth and h. To determine λ and Δth, we establish a relation
between them. Since RTTs in x and y are set to the mode
of each cluster respectively before merging, the merged RTTs
are comprised of alternating segments, where each segment
includes RTTs of the same value and consecutive segments
include RTTs of different values. We represent the merged
RTTs as r = (s1, . . . , sk), where si is the i-th segment, and
the number of RTTs in si as N(si). The relation between
λ and N(si) is as follows.

Theorem 1: Let dx and dy be the modes of x and y, and
the merged RTTs have k segments. For λ ∈ (0, |dx − dy| /2),
we have that Δi = λ

2N(sj)
if ri is in sj for j ∈ {1, k} and

that Δi = λ
N(sj)

if ri is in sj for j ∈ {2, . . . , k − 1}.
Proof: The proof is provided in Appendix B.

Threorem 1 tells us that the changes to RTTs depend on
the number of RTTs in their segment. We set a threshold
Nth to determine if the number of RTTs in a segment

is significant. We refer segments with at least Nth RTTs as
significant segments. Since we expect RTTs in significant seg-
ments have insignificant changes after TVD, we set the thresh-
old Δth equal to λ/Nth. The relation between λ and Δth holds
for λ between 0 and |dx − dy| /2. We thus can set λ to
any value in the range. The parameters h and Nth both
determine the percentages of different latency patterns. Higher
h and Nth result in a larger percentage of latency patterns
to be identified as having overlapping modes. As will be
discussed in later sections, to guarantee the accuracy of
AP-atoms, we prefer relatively large h and Nth. We use
h = 0.8 and Nth = 5 in our later experiments, where the
setting of Nth also considers the data density in our dataset as
discussed in Appendix A. To avoid high-variation RTTs that
are greatly inflated, we require the largest MSC cluster include
at least Nth RTTs.

3) Clustering Clients Based on Latency Patterns: After
having the latency patterns of clients, we want to cluster
clients such that clients in the same cluster have similar latency
patterns. The latency patterns of clients are identified for a
given time period and can change over different time periods,
depending on the network events in the periods. To ensure that
clients that experienced the same network event, i.e., having
the same latency pattern, can be found, we cluster clients
based on latency patterns identified for the same time period.
In the next section, we will discuss how to consolidate latency
patterns over different time periods.

Once we have identified latency patterns, we divide clients
having the same latency pattern into the same group and
cluster clients in each group seperately. For clients with over-
lapping modes, since they already include individual addresses
with dissimilar modes, we consider that each of them is a
cluster by itself. Due to the data granularity limitation of our
dataset, even if we find that addresses in some /24 clients
have a distance between latencies greater than the predefined
threshold, we cannot further split these clients into smaller
clusters. Nonetheless, this is a limitation of our dataset, not
our method. Our method can be used to split /24 clients if
the measurements of individual addresses in the /24 block are
available. For clients with non-overlapping modes, we deter-
mine if two clients should be in the same cluster by merging
the RTTs of the two clients and then checking the latency
pattern of the merged RTTs. If the merged RTTs continue to
have non-overlapping modes, the two clients shoud be in the
same cluster; otherwise, they are in different clusters. Two
clients with non-overlapping modes are in the same cluster
only if the modes of latencies of the two clients are similar
both in values and in time duration. The degree of similarity is
determined by the TVD algorithm discussed above. To cluster
clients with a single mode, we use the quality threshold (QT)
clustering algorithm [30]. Since all clients only have a single
mode, each of them is associated with the value of the mode
and the QT algorithm clusters clients based on the values of
their modes. The QT algorithm takes the pre-defined threshold
as a parameter for clustering. After clustering, clients in the
same cluster have difference in modes less than the pre-defined
threshold.

Since the algorithms to identify latency patterns and the QT
algorithm are of superlinear complexity [2], [10], clustering
all clients together is of high complexity. We thus divide the

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2021 at 04:54:13 UTC from IEEE Xplore. Restrictions apply.

2754 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018

Internet address space into prefixes of proper size, which we
refer to as the top prefix, and cluster clients using the QT
algorithm only within each top prefix, not across them. For
the sizing of top prefixes, there is a tradeoff between scala-
bility and computational complexity. As will be discussed in
Section III-A5, the number of top prefixes affects the number
of AP-atoms. Considering both scalability and computional
complexity, we use /16s as top prefixes and need 45K /16s to
cover the entire Internet address space of the 592K routable
BGP prefixes provided by CAIDA.

4) Evolution of Client Clusters: Given a server, we can use
latency patterns of clients in a single period to obtain the
clusters of clients in that period (single-period clusters). Due
to changing network conditions and the emergence of new
clients, single-period clusters can only reflect the similarity of
clients in one period. For each top prefix, we want a set of
client clusters that dynamically adapts to the changing network
conditions and cumulatively accommodates new clients. Fur-
ther, since the latency patterns of clients could be misidentified
in any one time period, we want to be able to correct the
misidentification over time. We refer to such client clusters
as cumulative clusters. As cumulative clusters use latencies
of clients from multiple (both past and current) periods,
cumulative clusters include more clients than single-period
clusters and more accurate latency patterns of clients.

Suppose we want to obtain the cumulative clusters in the
(n + 1)-st period. We first consolidate clients in the cumu-
lative clusters in the n-th period together with clients in the
single-period clusters in the (n+1)-st period, and then correct
the latency patterns of clients that are misidentified. The cumu-
lative clusters in the n-th period are obtained from the latency
patterns of clients from the first to the n-th periods. When
n is equal to 1, the cumulative clusters are the single-period
clusters in the first period. Depending on whether a client has
identifiable latency patterns on the n-th and (n + 1)-st time
periods, we have three cases (not including the case when the
client has no identifiable latency patterns on both periods).
For each case, we must treat clients differently based on their
latency patterns.

In the first two cases, a client has an identifiable latency
pattern in the (n + 1)-st period. We cluster the client using
the latency pattern and record the latency pattern for cor-
rection later. In the third case, a client has no identifiable
latency pattern in the (n + 1)-st period. We want to use
the client’s latency pattern in the n-th period to infer the
one in the (n + 1)-th period for the consolidation. More
specifically, in the first two cases, if the client has overlapping
and non-overlapping modes, the client is in the single-period
cluster of the client in the (n+1)-st period, where single-period
clusters are obtained by clustering clients based on their
latency patterns in that period. If the client has a single mode,
we calculate the moving average of the mode and use the
moving average to cluster the client with other single-mode
clients later. Using moving average is to smooth the mode
and thus be more resilient to atypical modes.

In the third case, if the client has overlapping modes in
the n-th period, it is a cluster by itself in the (n + 1)-st
period. If the client has a single mode, the moving average
of its mode in the n-th period carries to the (n + 1)-st period
and the moving average is used to cluster the client with

other clients. If the client has non-overlapping modes, we
check if the client is in the same cumulative cluster with
other clients in the n-th period, referred to as in-cluster clients.
If there is no in-cluster client, the client is a cluster by itself
in the (n + 1)-st period. If in-cluster clients exist, we use the
most frequent pattern of these clients in the (n + 1)-st period
as the latency pattern of the client. It is possible that none of
the in-cluster clients have identifiable pattern in the (n+1)-st
period or the most frequent pattern still has non-overlapping
modes. In this case, the client and its in-cluster clients are still
in the same cluster in the (n+1)-st period. If the most frequent
pattern has overlapping modes, the client is in a cluster by
itself in the (n+1)-st period. If the most frequent pattern has a
single mode, the average mode of the in-cluster clients is used
as the mode of the client in the (n+1)-st period. We calculate
the moving average using the mode for the client and use the
moving average to cluster the client with the other clients later.

After the operations above, clients in the n-th and (n +
1)-st periods are consolidated. We record the most recent
latency pattern (i.e., the one in the (n + 1)-st period) and
correct the latency patterns of clients to their most frequent
latency patterns in record if the most recent one differs
from the most frequent. This is to avoid the possibility that
the most recent latency pattern is misidentified. However,
we do not correct the latency patterns of clients if their most
frequent latency patterns are non-overlapping modes, as non-
overlapping modes are temporary due to network events.
Since clients with non-overlapping and overlapping modes
are already clustered, we must cluster clients with a single
mode using the QT algorithm, which operates on the moving
averages of their modes. All the resulting clusters combined
comprise the cumulative clusters of clients in the (n + 1)-st
period. In the following, we use cumulative clusters to get
AP-atom candidates and simply refer to cumulative clusters
as clusters.

5) AP-Atom Candidates: Optimal Prefix Splitting: After
clustering, we obtain clusters including clients with similar
latency patterns to a given server. However, these clusters only
include clients with identifiable latency patterns in our dataset.
We cannot directly use these clusters for global load balancing.
Instead, we use them as a guide to generate a set of prefixes
that cover the entire Internet address space.

Given a server, we can have a set of client clusters in each
top prefix. Our goal is to find the minimum set of prefixes
(i.e., AP-atom candidates) for each top prefix such that 1) these
prefixes can cover the entire address space of the top prefix
and 2) using the longest prefix match, clients in the same
cluster are matched into the same prefix and clients in different
clusters are matched to different prefixes. The longest prefix
match algorithm [28], widely used for Internet routing, always
finds the prefix that shares the most number of common bits
with the address of the client. This property guarantees that
even when one prefix is included in another prefix, the client
can still be matched to the correct one. In the following,
we refer to this problem as optimal prefix splitting.

To obtain the minimum set of prefixes, we construct a binary
tree from all the prefixes covered by the address space of the
top prefix. Each node in the tree is a prefix, where the root
of the tree is the top prefix and the leaves are /24 clients.
The children of a prefix /x are two /(x + 1) prefixes that

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2021 at 04:54:13 UTC from IEEE Xplore. Restrictions apply.

PI et al.: AP-ATOMS: HIGH-ACCURACY DATA-DRIVEN CLIENT AGGREGATION FOR GLOBAL LOAD BALANCING 2755

evenly split the /x prefix. Clusters of /24 clients are indexed
and each /24 client, if it has an identifiable latency pattern,
is associated with the number of the cluster that the client is in.
Clients in the same cluster have the same cluster number and
must be matched to the same prefix. Clients with no identifable
pattern has no cluster number and can be matched to any prefix
depending on how the address space is split. Among all the
nodes in the tree, we want to select the minimum number
of nodes that can achieve the optimal prefix splitting, where
the prefixes at the selected nodes comprise the minimum set
of prefixes. For each node in the tree, we have two choices,
either selecting the node or not.

Let us start the node selection from the top prefix. If the
top prefix is not selected, the minimum set of prefixes is
the union of the minimum sets of prefixes needed to achieve
the optimal prefix splitting for the left and right children of
the top prefix. If the top prefix is selected, there could be
multiple clusters of clients in the subtree of the root node,
where the subtree of a node consists of the node and all
descendents of the node. We must determine which cluster
of clients the top prefix should cover under the longest prefix
match. Because clients in different clusters should be matched
to different prefixes, each prefix can only cover one cluster.
Suppose the top prefix is selected to cover the i-th cluster.
To guarantee that clients in the i-th cluster are matched with
the top prefix under the longest prefix match, for other prefixes
we must select the largest ones whose subtrees do not include
clients in the i-th cluster; otherwise, since these prefixes are
smaller than the top prefix, clients in the i-th cluster in the
subtree of these prefixes will be matched with them rather
than the top prefix under the longest prefix match. We refer
to such prefixes as complementary prefixes to the top prefix.
To generalize the definition, the complementary prefixes to
a prefix are the largest prefixes that are in the subtree of the
prefix and do not include any client from the cluster covered by
the prefix under the longest prefix match. When the top prefix
is selected, the minimum set of prefixes to achieve the optimal
prefix splitting is the top prefix and the union of the minimum
set of prefixes needed for each complementary prefix to the
top prefix, where the set of complementary prefixes depends
on which cluster the top prefix covers.

From the selection process above, we can see that the
problem of optimal prefix splitting can be divided into similar
subproblems. We can use dynamic programming to solve the
problem as follows. Suppose we have a node u and want to
know the optimal splitting of the prefix at node u. We denote
the minimum number of prefixes needed as Fopt(u). The set
of prefixes that achieve the minimum number of prefixes is the
minimum set of prefixes. We denote the number of prefixes
needed by selecting node u as Fin(u, i), where i is the cluster
number of the clients that the prefix at node u must cover under
the longest prefix match. We index clusters from 1 and use
Fin(u, 0) for the case that no cluster is included in the subtree
of node u. Suppose the i-th cluster is chosen to be covered
by the prefix at node u. We denote the set of complementary
prefixes to the prefix at node u as Pu,i. The subtree of each
complementary prefix includes a set of clusters—the set may
be empty. We denote the set of clusters in the subtree of node
v as Sv , where Sv is empty if no cluster is in the subtree of
node v. If node u is not selected, no cluster is covered by the

prefix at node u and the optimal splitting is determined by
the children of node u, denoted as Cu. We denote the number
of prefixes needed by not selecting node u as Fout(u). Thus,
the optimal solution is:

Fopt(u) = min {mini∈Su {Fin(u, i)} , Fout(u)} ,

where mini∈Su {Fin(u, i)} is the minimum number of prefixes
among all cases when different clusters in the subtree of
node u are chosen to be covered. Based on the selection
process, we also have that

Fin(u, i) = 1 +
∑

v∈Pu,i

Fopt(v)

and

Fout(u) =
∑

v∈Cu

Fopt(v).

We use dynamic programming to compute the optimal
solution. When traversing the binary tree, we stop at a node
either when the subtree of the node includes no cluster or a
single cluster. Suppose we stop at node v. If node v includes
no cluster, we set Fin(v, 0) = 1, because no further search is
needed. If node v includes a single cluster and the cluster
number is i, we set Fin(v, i) = 1. In both cases, we set
Fout(v) to ∞ such that the prefix at node v must be included to
guarantee that either the entire address space is covered or each
cluster is covered by a prefix. After we obtain the minimum
set of prefixes, each prefix is an AP-atom candidate.

B. AP-Atoms: Multi-Server View

We now have a set of AP-atom candidates for each server,
where clients in the same AP-atom candidate have small
distances between their latencies to the server. Since the sets
of AP-atom candidates to different servers may be different,
we next merge these sets to obtain AP-atoms. The goal of this
merging operation is to achieve server-independence. Under
the longest prefix match rule, the merging can be easily done
by combining the set of AP-atom candidates of each server.
Suppose we have a client that is in the prefix a1.b1.c1.d1/x1 to
server 1 and is in the prefix a2.b2.c2.d2/x2 to server 2. For the
two prefixes, since they cover the same client, the larger prefix
must include the smaller one, i.e., the address space covered
by the smaller prefix is within the address space covered
by the larger one. After combining the sets of AP-atom
candidates, we have both prefixes in the set of AP-atoms.
Under the longest prefix match rule, the client is matched to
the smaller prefix. Since the larger prefix includes the smaller
one, the client is also in the larger prefix and thus has small
dispersion to both servers.

Combining AP-atom candidates to each server gives us the
set of AP-atoms, but this set includes many empty prefixes,
i.e., the ones that no clients are matched to. In other words,
the address space covered by an empty prefix is the combi-
nation of the address spaces covered by other small prefixes.
For instance, if the set of AP-atoms includes a /x prefix and
two /(x + 1) prefixes that evenly divide the address space of
the /x prefix, the /x prefix is an empty prefix. After pruning
all empty prefixes, we obtain the finalized set of AP-atoms.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2021 at 04:54:13 UTC from IEEE Xplore. Restrictions apply.

2756 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018

C. Discussions on AP-Atoms

We know how to obtain AP-atoms, but it is unclear how
AP-atoms perform under specific network scenarios: middle-
boxes, high-variation latencies and network changes.

1) Aggregating Clients Behind Middleboxes: Middleboxes
generally hide their clients’ addresses from external networks.
When a server communicates with clients behind a middlebox,
only the public addresses (i.e., publicly routable addresses)
of the middlebox are visible to the server. From the server’s
perspective, all measurements are from the same address.
If these measurements exhibit a single latency (e.g., clients
behind a NAT have similar latencies to the server), the public
address is further aggregated with other clients based on the
latency. In contrast, if these measurements exhibit more than
one latency (e.g., clients behind a NAT have evenly distributed
latencies from 100 to 200 ms to the server), the public address
will be treated as a seperate aggregation unit. In AP-atoms,
middleboxes that hide the private addresses from the rest of
the Internet implicitly aggregate these private addresses behind
them. Nonetheless, middleboxes can be further aggregated to
reduce the number of aggregation units that a mapping system
has to maintain. The potential improvements of AP-atoms are
discussed in Section III-C4.

2) Aggregating Clients With High-Variation Latencies:
Clients could have various path performance depending
on their network conditions. Clients in mobile networks
(e.g., cellular) are prone to experiencing more variations
in latency than those in wired networks. For clients with
high-variation latencies, if they are behind a middlebox, they
will be aggregated by the middlebox as discussed above.
In celluar networks, a majority of clients (70% in [27]) are
reported behind a middlebox and have private addresses. For
clients with public addresses, if they have large-variation laten-
cies, AP-atoms will group them into small aggregation units.
To understand the resilience of AP-atoms to latency variations,
we conduct experiments in Section IV-C, which shows that
our algorithm is able to identify latency patterns even when
30% of samples are inflated by 50% on average. As AP-atoms
aggregate clients starting from /24 blocks. The worst case is
that AP-atoms treat each /24 block as an aggregation unit,
which increases the total number of aggregation units. This
weakness of AP-atoms can be overcome if combined with
active probing as discussed in Section III-C4.

3) Impact of Network Changes on AP-Atoms: When net-
work conditions change, the performance of clients using the
network might be affected, but no re-grouping of clients is
needed if clients in the aggregation unit still have similar
path performance after the change.9 Only when network
changes cause parts of an aggregation unit to have different
performance than the others, clients in that aggregation unit
should be re-grouped. Since AP-atoms group clients based on
measurements, the re-grouping of clients requires new mea-
surements be collected after the change. If a network change
is long-term, AP-atoms would be updated to accommodate
the change after it is detected. On the other hand, if the
network change is transient, the update of AP-atoms may not
be responsive to the change. The time taken to collect sufficient
new measurements for re-grouping clients depends both on the

9The reasons for this could be that clients take a new path with the same
performance or that the performance of clients is changed by the same amount.

Fig. 7. Impact of network changes on client aggregation.

portion of clients affected by the change and the traffic rates
of clients. An experimental study on the responsiveness of
AP-atoms to network changes is provided in Section IV-C.

In Figure 7, we use route changes as an example of network
changes to show how client aggregation is affected. Before the
route changes, all clients in autonomous system AS1 take a
path traversing gateway G1 and AS2 to the server (represented
by the solid line) and have similar latencies. The first route
change occurs between two routers in AS2. Since all clients
still share the same path to the server, the performance of
clients is changed equally and thus no client re-grouping is
needed. The second route change causes clients C3 and C4 to
use a new gateway G2 to the server. If the new path increases
the latency to the server, clients C3 and C4 will be re-grouped
into a separate aggregation unit. In contrast, if the route change
does not affect the latency to the server, all clients remain in
the same aggregation unit.

4) Weaknesses and Improvements of AP-Atoms: AP-atoms
are obtained from passive measurements, which incurs no
extra measurement overheads. Unfortunately, this also leads
to several weaknesses of AP-atoms: 1) AP-atoms aggregate
clients with high-variation latencies into small aggregation
units, which impacts the scalability of AP-atoms; 2) AP-atoms
cannot promptly react to abrupt network changes, e.g., a BGP
routing change. The responsiveness of AP-atoms to network
changes is determined by the traffic rates of clients; 3) since
AP-atoms aggregate clients based on measurements, if the
network has few measurements available, AP-atoms may not
be accurate for clients in that network. These weaknesses can
be overcome by using targeted active probing to complement
AP-atoms [12]. Suppose we find a large IP block consisting
of small aggregation units, each of which includes clients
with high-variation latencies. It is possible that this large IP
block includes addresses from cellular networks. We can send
probes to discover if the clients in this large IP block are
similar in topology (e.g., using the same gateway connecting
with the Internet).10 Similarly, we can complement passive
measurements with active measurements to be more responsive
in detecting network changes. The sending rate of active
probes is determined by the requirements on responsiveness.

5) Extension of AP-Atoms to IPv6 Networks: AP-atoms are
specifically designed for IPv4 networks. Since IPv6 has a
much larger address space that is presently more sparsely allo-
cated and carries much less traffic than IPv4 [19], the proper
use of AP-atoms for IPv6 networks remains an interesting
future research topic.

IV. PERFORMANCE EVALUATION

We use 30 days of latency measurements between clients
and 10 servers in September 2015, where the locations of

10It has been reported that major cellular carriers in US connect their
networks with the Internet through a few ingress points [31].

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2021 at 04:54:13 UTC from IEEE Xplore. Restrictions apply.

PI et al.: AP-ATOMS: HIGH-ACCURACY DATA-DRIVEN CLIENT AGGREGATION FOR GLOBAL LOAD BALANCING 2757

Fig. 8. Locations of servers.

servers are shown in Figure 8. Due to data sparsity, as dis-
cussed in the Appendix A, we divide 30 days into 15 two-day
periods and use measurements from two consecutive days
to identify latency patterns. To avoid atypical latencies,
we smooth the latencies by their moving average with the
typical weights of moving average in TCP. To present the
capability of AP-atoms in trading off scalability for accuracy,
we obtain three sets of AP-atoms using different pre-defined
thresholds for the QT algorithm. The numbers of AP-atoms
on these sets are chosen to be on scales that are larger than,
equal to, and smaller than the number of aggregation units
under existing aggregation methods respectively. Each set of
AP-atoms is compared against existing aggregation methods
in terms of scalability and server-independence.

A. Scalability of AP-Atoms

We look at the scalability of AP-atoms in three aspects:
1) the scaling of AP-atoms over time, 2) the scaling of
AP-atoms over the number of servers and 3) the distribution of
prefix sizes of AP-atoms. The third aspect tells us the reasons
for the advantages of AP-atoms over existing aggregation
methods in terms of scalability.

1) Scaling of AP-Atoms Over Time: Since AP-atoms evolve,
we want to know the scaling of AP-atoms over time and the
factors that affect the number of AP-atoms. Figure 9(a) shows
the number of AP-atoms over 15 periods, where AP-atom(k)
denotes the AP-atoms obtained by setting the pre-defined
threshod equal to k ms, meaning that the radius of clusters
in the QT algorithm is less than k ms. In general, as the
period number increases, the total number of AP-atoms under
all thresholds increases. The increment is mainly caused by
the appearance of new clients, clients that never have an
identifiable latency pattern in the previous periods. Depending
on the latency patterns, new clients can cause the number of
AP-atoms to increase in three ways: 1) If the new client has
a single mode and the mode is far away from the modes of
other clients, a separate cluster will be needed for the client.
2) If the new client has non-overlapping modes not similar
to the latency patterns of other clients, the client will be in a
separate cluster. 3) If the new client has overlapping modes,
the new client will be in a separate cluster by itself.

Figure 9(b) shows the number of new clients in each
period. In the first five periods, there are at least 100K new
clients in each period and even until the last period, there
are still about 20K new clients. When the number of new
clients becomes stable at the 10-th period, the number of

AP-atoms(50) and AP-atoms(75) increases slowly. In con-
strast, AP-atoms(35) are sensitive to new clients and increase
with a rate of 15K per period after the 11-th period.
Comparing AP-atoms(35) and AP-atoms(75), we see that
a large threshold helps accommodate new clients without
incurring a significant number of new AP-atoms. This is
because most clients have a single mode, which can be
easily accommodated with other clients when the thresh-
old is large. When the last period ends, we obtain 895K
AP-atoms(35), 563K AP-atoms(50) and 322K AP-atoms(75),
which are 1.51×, 0.95×, and 0.54× the 592K number of BGP
prefixes. To cover the address space of BGP prefixes, we need
693K /20 IP blocks. Since geo-blocks generally have smaller
aggregation units than BGP prefixes, we need more geo-blocks
to cover the entire address space.

It is noticeable that even when there are more than 100K
new clients appearing in the second period, the number of
AP-atoms(75) in the second period is still less than that in the
first one. The decrement is caused by the correction of latency
patterns. From the first to the second period, clients identified
to have non-overlapping and overlapping modes in the first
period are corrected to have a single mode in the second one.
Under a large threshold, these clients changing to have a single
mode can be clustered with other cilents, causing the total
number of AP-atoms(75) to decrease. The latency patterns of
such clients also change when the threholds are equal to 35 ms
and 50 ms, but as AP-atoms(35) and AP-atoms(50) are more
sensitive to new clients, the total still increases.

2) Scaling of AP-Atoms Over the Number of Servers:
To be server-independent, AP-atoms are obtained by merging
the AP-atom candidates of each server. We want to know the
scaling of AP-atoms over the number of servers. Figure 9(c)
shows the number of AP-atoms under different numbers of
servers. As the number of servers increases, the number of
clients accommodated into AP-atoms increases sharply (not
shown here). At 8 servers, about 98% of clients have been
accomondated into AP-atoms, but this does not slow down
the linear increment of AP-atoms from server 9 to 10. The
key reason for the increment is because AP-atom candidates
of each server are obtained separately without considering
others. More specifically, AP-atom candidates of a server are
generated by the optimal prefix splitting based on the set
of clients to the server, while servers have different sets of
clients, which results in different sets of AP-atom candidates.
An optimization across servers would further decrease the
number of AP-atoms, which is a subject of our future research.

For small-scale CDNs with servers in 30 to 40 locations [1],
the scaling of AP-atoms is not a concern. Even when the
AP-atom candidates of all servers are used, based on the trend
of AP-atoms(75) in Figure 9(c), the number of AP-atoms is
approximately 470K for 40 servers, which is 0.8× the number
of BGP prefixes. For large-scale CDNs with more than 1K
locations of servers [12], [23], we can select servers whose
views of AP-atom candidates differ significantly and only
merge AP-atom candidates of these servers.

3) Distribution of Prefix Sizes: We have compared
AP-atoms with existing aggregation methods in terms of the
total number of aggregations needed to cover the Internet
address space, but the total number cannot tell us the reasons
for the scale of aggregation units. We look at the distribution

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2021 at 04:54:13 UTC from IEEE Xplore. Restrictions apply.

2758 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018

Fig. 9. Scalability of AP-atoms. (a) Scaling over time. (b) New clients over time. (c) Scaling over servers. (d) Prefix size distribution.

Fig. 10. Server-independence. (a) Accommodation of clients. (b) Disp. of aggr. units in the future. (c) Disp. of clients in the future.

of prefix sizes to understand the advantages of AP-atoms over
existing aggregations. Figure 9(d) shows the distributions of
prefix sizes of BGP prefixes and the three sets of AP-atoms,
where the 1.6% of BGP prefixes smaller than /24 are not
counted for the distribution. Since the IP2Location LITE
database does not include the entire Internet address space,
geo-blocks are not compared here. The largest prefix size of
BGP prefixes is /8, while as AP-atoms are split from /16 top
prefixes, AP-atoms have the largest prefix size equal to /16.

The three sets of AP-atoms include about 43K /16s, which
are the 97% of all /16s we use to cover the entire address
space. Large prefixes, due to covering large address space,
are preferred to minimize the number of aggregation units.
For each prefix size smaller than /16, AP-atoms(75) use a
smaller number of prefixes than BGP prefixes and thus have
a total number that is half the number of BGP prefixes.
AP-atoms(50) have almost equal number of prefixes as BGP
prefixes for each prefix size and thus have the same scale as
BGP prefixes, while AP-atoms(75) include higher numbers of
/23s and /24s than BGP prefixes. From the figure, we can
see that the different scales of AP-atoms are mainly due to
using different numbers of /23s and /24s. In other words,
top prefixes generally must be split into small prefixes under
a small threshold. It is interesting to note that only 5% of
AP-atoms(50)’s /24 aggregation units prefixes are also BGP
/24 prefixes. The /24 aggregation units in AP-atoms(50) are
constructed based on path performance whereas /24 BGP
prefixes reflect commercial organizational decisions that do
not necessarily reflect different network performances.

B. Server-Independence

To be server-independent, an aggregation unit must have
small dispersion to all servers, i.e., the maximum dispersion
of the aggregation unit to all servers must be small. We have
presented the maximum dispersion of existing aggregations
in Section II-A and use the best existing aggregation to
compare against AP-atoms. We first check if clients in the
past and current periods have been properly accommodated in
AP-atoms and then look at the performance of AP-atoms to
deal with clients in future periods.

1) Capability of Accommondating Clients: AP-atoms
accommodate clients based on the latency patterns of clients
in the past periods. If clients are properly accommodated in
AP-atoms, we would expect the maximum dispersion of the
clients calculated using the latencies in the past periods to
be small. We use the AP-atoms in the last period for the
experiments. Since the maximum dispersion of /20 IP blocks
is the smallest among existing aggregations (Figure 3(b)),
we compare the three sets of AP-atoms with /20 IP blocks.
Figure 10(a) shows the maximum dispersion of clients calcu-
lated using latencies from the first to the 15hbox-th period.
Compared to /20 IP blocks that have 17% of clients with
maximum dispersion larger than 50 ms, AP-atoms(35) only
have 1.5% of clients with the maximum dispersion larger than
50 ms. This implies that AP-atoms(35) properly accommodate
clients in terms of latency. The main reason for AP-atoms(35)
not able to control the dispersion of all clients less than 50 ms
is because the threshold is 35 ms, which allows clients in
the same AP-atom to have the maximum dispersion up to
70 ms. As the threshold increases to 75 ms, 12% of clients
have maximum dispersion larger than 50 ms.

2) Dispersion and Latency Prediction: At the end of each
period, we update AP-atoms and use them for the next period.
AP-atoms used in the (n+1)-st period are AP-atoms updated
when the n-th period ends. From Figure 9(b), we can see
that the number of new clients starts to slow down from
the 10-th period. We consider the 10-th period as the time
that AP-atoms have accumulated sufficient clients. From the
10-th to the 15-th period, we use AP-atoms in the n-th period
as the aggregation units in the (n + 1)-st period and cal-
culate the dispersion of clients in the (n + 1)-st period.
Given a server, the dispersion of a client to the server is
the maximum dispersion of the client over all periods to
the server. Using the dispersion of a client to each server,
we obtain the maximum dispersion of the client to all
servers.

Figure 10(b) shows the distribution of the maximum disper-
sion of aggregation units. Because the maximum dispersion of
aggregation units in BGP prefixes is the smallest among exist-
ing aggregations (Figure 3(a)), we compare AP-atoms with
BGP prefixes. While BGP prefixes have 26% of aggregation

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2021 at 04:54:13 UTC from IEEE Xplore. Restrictions apply.

PI et al.: AP-ATOMS: HIGH-ACCURACY DATA-DRIVEN CLIENT AGGREGATION FOR GLOBAL LOAD BALANCING 2759

units with dispersion larger than 50 ms, AP-atoms(35) can
reduce such aggregation units to 4%. The aggregation units
with zero dispersion are mainly /24s. It is interesting to note
that the percentage of /24s in AP-atoms(75) is 12% less than
that in BGP prefixes, but in Figure 10(b), the percentage of
aggregation units with zero dispersion in AP-atoms(75) is
higher than that in BGP prefixes. This is because /24s in
AP-atoms are identified by their traffic in the past and clients
with past history of traffic to a service provider are generally
more likely to have traffic to the service provider in the future.
Thus, /24s in AP-atoms(75) are more likely to have traffic than
the /24s in BGP prefixes.

Figure 10(c) shows the distribution of the maximum dis-
persion of clients, where /20 IP blocks are compared with
AP-atoms. About 13% of clients in /20 IP blocks have
dispersion larger than 50 ms. Even with a scale of aggregation
units that is 0.46× the number of /20 IP blocks, AP-atoms(75)
can reduce this number to 10%. With a scale that is 1.3× the
number of /20 IP blocks, AP-atoms(35) reduces this number
to 3.5%.

C. Tradeoff Between Tolerance and Responsiveness

Clients could have high-variation latencies to a server
if their paths are greatly inflated due to network events,
e.g., queuing and route changes. Our latency identification
algorithm can tolerate a certain level of inflation and still
accurately identify the underlying latency pattern. A larger
set of measurements is always preferred for latency identifica-
tion, but collecting measurements takes time, influencing the
responsiveness of AP-atoms to network changes. We want to
study the tradeoff between tolerance and responsiveness.

To test our algorithm, we create synthetic latency samples
with different levels of inflations, controlled by the probability
of latency samples being inflated (denoted as r). Suppose
the base latency without inflation is denoted as l. In our
experiments, each sample is chosen to be inflated with a
probability of r. If a sample is inflated, we first determine the
inflation that is uniformly distributed between 0 and l,11 and
then add the inflation to the base latency; otherwise, the sample
is equal to the base latency. We continue generating new
samples until the desired number of samples (denoted as n)
is reached. We then apply our algorithm on these samples
to identify the base latency. If a single latency is found in
these samples, we consider that our algorithm succeeds in
identifying the base latency and calculate the identification
error (i.e., the difference between the identified base latency
and the actual base latency).

In our experiments, we set the base latency to 100 ms such
that the maximum inflation is 100 ms, large enough to simulate
variable network conditions. To avoid randomness, we repeat
the same experiment 1000 times and use the average results.
Figure 11 shows the average success and error ratios under
different r’s and n’s, where the success ratio is the percentage
of repeated experiments in which our algorithm succeeds in
identifying the base latency and the error ratio is the ratio
of the identification error to the base latency. Figure 11(a)

11We use a simple uniform distribution to model latency inflation. The
maximum inflation is set to l, proportional to the base latency, as a path with
larger latency is likely to traverse more links and experience larger inflation.

Fig. 11. Tolerance to latency inflation. (a) Error ratio. (b) Success ratio.

shows that the identified base latency is accurate with an
error less than 5% for all r’s, but the cost of having accurate
identification is that the success ratio is relatively low when
the number of samples is small. Using a larger number of
samples can improve the success ratio to near 100% when
r = 0.1 or 0.2, but this fails when r increases to 0.4. This
implies that the limit to the tolerance of our algorithm to
latency inflation is reached when 30% of samples are inflated
50 ms on average.

The success ratio determines the percentage of clients whose
latencies can be identified. A better tolerance to inflation
leads to a higher success ratio. We want a better tolerance
in order to have more clients with identifiable latencies. How-
ever, collecting a larger number of measurements generally
takes a longer time, resulting in slow response to network
changes. Considering both tolerance and responsiveness, using
12 samples for latency identification is a reasonable choice.12

When no base latency is identified at 12 samples, we can
either consider the clients have multiple latencies and regroup
them or wait for more samples to be collected. The actual
time taken to collect 12 samples depends on the traffic rates of
clients. We can complement passive measurements with active
probes to improve the responsiveness to network changes.

Compared to AP-atoms, other aggregation methods are not
adaptive to network changes. Geolocations and LDNSs of
clients are static. Although BGP prefixes may be changed,
as BGP prefixes are designed for Internet routing, changing
BGP prefixes would cause many BGP issues like convergence
and incur communication overheads. As found in [25], except
for new networks, most new BGP prefixes are due to BGP
misconfigurations. Moreover, BGP prefixes are managed by
tens of thousands of service providers separately. Cooperation
from these service providers is needed to change BGP prefixes.

V. RELATED WORK

In Internet mapping, clients are aggregated to aggregation
units for scalable management of the Internet. Choosing
the proper level of aggregation is a complex and cru-
cial problem [3]. Exisiting aggregations generally aggregate
clients based on several attributes: (1) geographic locations,
(2) topological proximity, (3) LDNSs, or (4) fixed-size pre-
fixes. In geoclustering, clients with geographic proximity are
aggregated into geoclusters [29]. By considering BGP prefixes
as a natural group of Internet clients, geoclusters are obtained
by splitting BGP prefixes into smaller prefixes until clients
in prefixes have consensus on their geographic locations.
Aggregating clients by topological proximity can be conducted

12In previous experiments, we divide time into fixed-length periods and use
measurements from the same periods for comparison purpose.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2021 at 04:54:13 UTC from IEEE Xplore. Restrictions apply.

2760 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 6, DECEMBER 2018

at the prefix level or router level. Clients in the same BGP
prefix largely have identical Internet routing. In anycast CDNs,
clients are in the same BGP prefix are redirected to the same
server and the nearest server is the one with the shortest BGP
routing path to clients [22]. In iPlane, clients are aggregated
into BGP prefixes to construct a topological map for the
Internet [16]. Moreover, in latency-based client redirection,
the latency from the representitive client in a BGP prefix to a
server is used as the latency from all clients in the prefix to the
server [26]. The geographic locality of BGP prefixes has also
been studied [24]. Recently, Lee and Spring [31] developed a
method to aggregate /24s based on the last-hop routers or non-
hierarchical relationships. However, since the method relies on
topology discovery, which makes the aggregates hard to cover
the entire Internet address space.

Aggregating clients by LDNSs is widely used in DNS-based
CDNs [11], [26], where clients using the same LDNS are
redirected to the same server. As the DNS infrastructure
evolves, the number of clients using remote DNS services
grows, causing the mismatch problem between clients and
LDNSs [8], [20]. To solve this problem, end-user mapping
directly uses the subnets of clients included in the EDNS
queries to locate clients on the Internet [12]. However,
end-user mapping requires the mapping system estimate the
performance from servers directly to client aggregations [11].
Thus, a proper aggregation is crucial to both the scalability and
accuracy of the mapping system. Using a heuristic method,
Chen et al. [12] suggested that /20 IP blocks are a good
tradeoff between scalability and accuracy.

Our work is also related to those studying whether /24s
are a good aggregation unit. Gharaibeh et al. [21] studied the
similarity between individual addresses in /24 prefixes in terms
of geographic co-locality. Lee and Spring [31] studied the
similarity between individual addresses in /24 prefixes in terms
of topological proximity. Both works confirm that /24 prefixes
are not necessarily the smallest aggregation units.

VI. CONCLUSION

In this paper, we presented a comparative study of existing
client aggregation methods and found that even for the best
existing client aggregation, a significant portion (17%) of
clients are far away from other clients in the same aggregation
unit in terms of latency. We analyzed the causes for the
widely dispersed clients and found the main cause to be
that existing methods aggregate clients based on attributes
other than path performance. To address this, we proposed
a data-driven aggregation called AP-atoms, which group
clients based on their path performance. The data-driven
property enables AP-atoms to dynamically adapt to network
changes. We studied the scalability of AP-atoms and compared
AP-atoms against existing aggregation methods. Our results
showed that AP-atoms can flexibly trade off scalability and
accuracy. Using the same scale of aggregation as existing
methods, AP-atoms can reduce widely dispersed clients by 2×
and reduce the 98-th percentile difference in clients’ latencies
by almost 100ms.

For future work, we want to further improve the scalability
of AP-atoms and use AP-atoms for performance prediction,
which could significantly reduce active measurement loads and
enable intelligent mechanism to detect network congestions.

Fig. 12. Data density.

APPENDIX A
DATA DESCRIPTION

Our dataset is provided by a commercial global load balanc-
ing service provider, collecting over 1 billion measurements
per day as part of their normal operations. Each time when a
client browses an instrumented web hosted by a participating
provider, a Javascript script is downloaded and executed to
download test objects. The test objects are small enough to fit
into a single TCP packet. The time to first byte is recorded as
the latency to the participating provider. This project is called
Radar and is described in detail in [7]. Measurements are
conducted when the browser is idle such that user experience is
not affected. Since each visit to the web pages will trigger only
a few measurements, the measurements from single clients
are sparse over time. Our dataset includes measurements
from both wireless (Wi-Fi only) and wired networks, where
the percentage of measurements from wireless networks is
12.8%. Since measurements in our dataset are triggered by
user activities, our dataset resembles passive measurements
that global load balancers would obtain from user traffic. The
anonymization of addresses in our dataset does not limit the
use of our dataset as explained in Section III-A1.

Our dataset covers 240 countries (280 in total) listed in ISO
3166 and 34% of Autonomous Systems (ASs) in CAIDA’s
database [5], including all Tier-1 ASs, with 36% of the
remainder being Tier-2 ASs (directly connected to Tier-1 ASs).
Clients in the data come from 4.2M /24s and have traffic with
160 service provider sites. However, most providers do not
have enough traffic with clients for analysis purposes. We only
use the top 10 servers having the most traffic with clients in our
experiments. Figure 12 shows the distribution of the number
of RTT samples between clients and servers in period lengths
of 1 to 8 days. The measurements of individual addresses in
the same /24 block are aggregated and are considered from
the same single client. In 1-day periods, 38% of clients only
have one sample. As the period length increases, the number of
RTT samples from clients increases. Due to the sparsity of our
dataset, we use 2-day periods for latency pattern identification
in our experimentrs. We also include only clients with at least
5 measurements in a 2-day period.

APPENDIX B
PROOF OF THEOREM 1

Without loss of generality, we assume dx < dy . When
the optimal solution is reached, for any i ∈ {1, . . . , m},
we must have dx ≤ zi ≤ dy . For zi’s less than dx or larger
than dy , we can always get a smaller cost by setting these
zi’s to dx or dy whichever is closer in distance. Similarly,
when the optimal solution is reached, for ri’s in the same
segment, we must not have oscilating Δi’s, e.g., Δi >
Δi−1 and Δi > Δi+1. For such Δi’s, a smaller cost can

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2021 at 04:54:13 UTC from IEEE Xplore. Restrictions apply.

PI et al.: AP-ATOMS: HIGH-ACCURACY DATA-DRIVEN CLIENT AGGREGATION FOR GLOBAL LOAD BALANCING 2761

be achieved by setting Δi = (Δi−1 + Δi+1)/2. Thus, for
all ri’s in the same segment, we have a monotonic sequence
of Δi’s. Without loss of generality, assuming that the sequence
of Δi’s in the same segment is non-decreasing, we have
|zi−zi−1| = |Δi−Δi−1| = Δi−Δi−1. By denoting dy−dx as
Δd and zi − zi−1 as Δzi, we can rewrite the cost function as

f =
m∑

i=1

Δ2
i +λ

⎛

⎝Δd−Δ1−ΔN(s1)+1 +
m∑

i=N(s1)+2

|Δzi|
⎞

⎠.

When f is minimized, we have that for each ri where
i ∈ {2, . . . , N(s1)}, ∂f/∂Δi = 2Δi = 0. However, since the
sequence of Δi is non-decreasing, we have that f is minimized
when Δi = Δ1 for i ∈ {2, . . . , N(s1)}. This implies that the
cost is minimized when all ri’s in the same segment have
the same change. Let Δsi be the change of RTTs on the
i-th segment. We have

f =
k∑

i=1

N(si)Δ2
si

+ λ

(
(k − 1)Δd−

k∑

i=1

Δsi
−

k−1∑

i=2

Δsi

)
.

Taking the derivatives of f with respect to Δsi , we have
that the optimal solution is achieved when Δsi

= λ
2N(si)

for

i ∈ {1, k} and Δsi = λ
N(si)

for i ∈ {2, . . . , k − 1}. For
the similar reason as Δi’s, we must not have oscilating Δsi ’s
across segements, i.e., λ

N(si)
+ λ

N(sj)
≤ Δd is true for any

N(sj) and N(sj) when i �= j. We thus have λ ≤ Δd/2.

REFERENCES

[1] USC CDN Coverage. Accessed: May 6, 2017. [Online]. Available:
http://usc-nsl.github.io/cdn-coverage

[2] A. Danalis, C. McCurdy, and J. S. Vetter, “Efficient quality threshold
clustering for parallel architectures,” in Proc. Parallel Distrib. Process.
Symp., May 2012, pp. 1068–1079.

[3] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” in Proc. ACM SIGCOMM CCR, 2015, pp. 52–66.

[4] CAIDA. (May 2015). The CAIDA AS Relationships Dataset. [Online].
Available: http://www.caida.org/data/as-relationships/

[5] CAIDA. Routeviews Prefix to AS Mappings Dataset for IPv4 and
IPv6. Accessed: Sep. 1, 2015. [Online]. Available: http://www.
caida.org/data/routing/routeviews-prefix2as.xml

[6] C. Contavalli, W. van der Gaast, D. Lawrence, and W. Kumari, Client
Subnet in DNS Queries, document RFC 7871, May 2016.

[7] Cedexis. Radar Crowd Sourcing. Accessed: Feb. 25, 2018. [Online].
Available: https://www.cedexis.com/technology/

[8] C. Huang, I. Batanov, and J. Li, “A practical solution to the client-LDNS
mismatch problem,” in ACM SIGCOMM CCR, 2012, pp. 35–41.

[9] Citrix. NetScaler Global Server Load Balancer. [Online].
Available: https://docs.citrix.com/en-us/netscaler/12/global-server-load-
balancing.html

[10] D. Freedman and P. Kisilev, “Fast mean shift by compact density
representation,” in Proc. CVPR, Jun. 2009, pp. 1818–1825.

[11] E. Nygren, R. K. Sitaraman, and J. Sun, “The Akamai network: A plat-
form for high-performance Internet applications,” in Proc. SIGOPS,
2010, pp. 2–19.

[12] F. Chen, R. K. Sitaraman, and M. Torres, “End-user mapping: Next
generation request routing for content delivery,” in Proc. SIGCOMM,
2015, pp. 167–181.

[13] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” in Proc. SIGCOMM, 2004, pp. 15–26.

[14] H. Jiang and C. Dovrolis, “Passive estimation of TCP round-trip times,”
in Proc. SIGCOMM, 2002, pp. 75–88.

[15] H. Tang, F. Liu, G. Shen, Y. Jin, and C. Guo, “UniDrive: Synergize mul-
tiple consumer cloud storage services,” in Proc. 16th Annu. Middleware
Conf., 2015, pp. 137–148.

[16] H. V. Madhyastha et al., “iPlane: An information plane for distributed
services,” in Proc. OSDI, 2006, pp. 367–380.

[17] IP2Location. Geolocate IP Address Location Using IP2Location.
Accessed: Oct. 18, 2016. [Online]. Available: http://www.
ip2location.com

[18] I. Selesnick. (2014). Total Variation Denoising (An MM Algorithm).
[Online]. Available: https://goo.gl/rjBpG

[19] J. Czyz et al., “Measuring IPv6 adoption,” in Proc. SIGCOMM, 2014,
pp. 87–98.

[20] J. S. Otto, M. A. Sánchez, J. P. Rula, and F. E. Bustamante, “Content
delivery and the natural evolution of DNS,” in Proc. IMC, 2012,
pp. 1–14.

[21] M. Gharaibeh, H. Zhang, C. Papadopoulos, and J. Heidemann, “Assess-
ing co-locality of IP blocks,” in Proc. IEEE Global Internet Symp.,
Apr. 2016, pp. 503–508.

[22] M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, and J. Padhye,
“Analyzing the performance of an anycast CDN,” in Proc. IMC, 2015,
pp. 531–537.

[23] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and
R. Govindan, “Mapping the expansion of Google’s serving infrastruc-
ture,” in Proc. IMC, 2013, pp. 313–326.

[24] M. J. Freedman, M. Vutukuru, N. Feamster, and H. Balakrishnan,
“Geographic locality of IP prefixes,” in Proc. USENIX ATC, 2005,
pp. 153–158.

[25] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP
misconfiguration,” in Proc. ACM SIGCOMM CCR, 2002, pp. 3–16.

[26] R. Krishnan et al., “Moving beyond end-to-end path information to
optimize CDN performance,” in Proc. IMC, 2009, pp. 190–201.

[27] S. Triukose, S. Ardon, A. Mahanti, and A. Seth, “Geolocating IP
addresses in cellular data networks,” in Proc. PAM, 2012, pp. 158–167.

[28] T. Hayashi and T. Miyazaki, “High-speed table lookup engine for
IPv6 longest prefix match,” in Proc. IEEE GLOBECOM, Dec. 1999,
pp. 1576–1581.

[29] V. N. Padmanabhan and L. Subramanian, “An investigation of geo-
graphic mapping techniques for Internet hosts,” in Proc. SIGCOMM,
2001, pp. 173–185.

[30] X. Jin and J. Han, “Quality threshold clustering,” in Encyclopedia of
Machine Learning. Boston, MA, USA: Springer, 2011, p. 820.

[31] Y. Lee and N. Spring, “Identifying and aggregating homogeneous
IPv4/24 blocks with hobbit,” in Proc. IMC, 2016, pp. 151–165.

Yibo Pi received the B.S. and M.S. degrees in electrical and computer
engineering from Shanghai Jiao Tong University, Shanghai, China, in 2012
and 2015, respectively. He is currently pursuing the Ph.D. degree with the
University of Michigan, Ann Arbor. His research interests include Internet
measurement.

Sugih Jamin is currently an Associate Professor with the Department
of Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor. His research interests include measurement-based applications.

Peter Danzig was an Associate Professor with the University of Southern
California, Los Angeles. He is currently with Panier Analytics, Menlo Park,
CA, USA.

Jacob Shaha received the B.S. degree in computer engineering from the
University of Utah in 2006 and the M.S. degrees in applied statistics and
electrical engineering systems from Pennsylvania State University and the
University of Michigan in 2014 and 2016, respectively. He is currently an
Instructor with the United States Military Academy, West Point.

Authorized licensed use limited to: University of Michigan Library. Downloaded on March 10,2021 at 04:54:13 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

